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Abstract It has recently been shown that it can be very productive to learn
models that combine both generative and discriminative parameter estimation.
On the one hand, generative approaches address the estimation of the joint
distribution – P(y,x), and are very efficient and on the other hand, discrimina-
tive approaches address the estimation of the posterior distribution – and, are
more effective for classification, since they model P(y|x) directly. However, dis-
criminative approaches are less computationally efficient as the normalization
factor in the conditional log-likelihood precludes the derivation of closed-form
estimation of parameters. In this paper, we take the widely used model of the
joint distribution – Bayesian networks – and show how parameter learning can
be done discriminatively but efficiently for classification. The contributions of
this paper are twofold – first, we propose a unified theoretical framework to
characterize the parameter learning task for Bayesian network classifiers and
second, we introduce a combined generative/discriminative parameter learn-
ing method for Bayesian network classifiers. We conduct an extensive set of
experiments on 72 standard datasets and demonstrate that our proposed pa-
rameterization provides an efficient discriminative parameter learning scheme
that outperforms other state-of-the-art parameterizations.

1 Introduction

The efficient training of Bayesian Network Classifiers has been the topic of
much recent research [1,3,6,10,13,16,22,24]. Two paradigms predominate [11].
One can optimize the log-likelihood (LL). This is traditionally called generative
learning. The goal is to obtain parameters characterizing the joint distribution
in the form of local conditional distributions and obtain the class-conditional
probabilities by using the Bayes rule. Alternatively, one can optimize the
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conditional-log-likelihood (CLL) – known as discriminative learning. The goal
is to directly estimate the parameters associated with the class-conditional
distribution – P(y|x).

Naive Bayes (NB) is a Bayesian network BN that specifies independence
between attributes given the class. Recent work has shown that placing a
per-attribute-value-per-class-value weight on probabilities in NB (and learn-
ing these weights by optimizing the CLL) leads to an alternative parameteri-
zation of vanilla Logistic Regression (LR) [23]. Introduction of these weights
also makes it possible to relax NB’s conditional independence assumption and
thus to create a classifier with lower bias [14,23]. In this paper, we general-
ize this idea to the general class of BN classifiers. Like NB, any given BN
structure encodes assumptions about conditional independencies between the
attributes and will result in error if they do not hold in the data. Optimizing
the log-likelihood in this case will result in suboptimal performance for classi-
fication [6,9,21] and one should either optimize directly the CLL by learning
the parameters of the class-conditional distribution or by placing weights on
the probabilities and learn these weights by optimizing the CLL.

We start by introducing a unified theoretical framework for the learn-
ing of the parameters of Bayesian network classifiers. Building on previous
work by [6,8,17,19,24], this framework allows us to lay out the different tech-
niques in a systematic manner; highlighting similarities, distinctions and equiv-
alences. Then we introduce a new parameterization – weighted Bayesian Net-
work Classifiers – that combines the efficiency of the generative approach by
pre-conditioning the weights, and the effectiveness of the discriminative ap-
proach by optimizing the CLL. It is based on a two-step learning process:

1. Generative step: We minimize the LL to obtain parameters for all local
conditional distributions in the BN.

2. Discriminative step: We associate a weight with each parameter learned in
the generative step and re-parameterize the class-conditional distribution
in terms of these weights (and of the fixed generative parameters). We can
then discriminatively learn these weights by optimizing the CLL.

It is interesting to note that, at first sight, one could question the necessity of
the generative step, because we know that with or without preconditioning,
(when optimizing a convex objective function such as CLL) the parameters
have to converge to the same point in the search space – preconditioning has
the effect of re-scaling the axis. This is a valid question, to which this paper
gives a direct answer: we show that our two-step formalization of the param-
eter learning task for BN is actually a re-parameterization of the one step
(discriminative) learning problem but with faster convergence of the discrim-
inative optimization procedure. In the experimental section, we complement
our theoretical framework with an empirical analysis over 72 domains; the
results demonstrate the superiority of our approach over the state of the art.

The rest of this paper is organized as follows. In Section 2, we present our
proposed unified framework for parameter learning of Bayesian network clas-
sifiers. We also give the formulation for class-conditional Bayesian Network
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models (CCBN) in this section. Two well-used parameterizations of class-
conditional Bayesian networks are given in Sections 3 and 4, respectively. In
Section 5, we present our proposed parameterization of CCBN. In Section 6,
we discuss some related work to this research. Experimental analysis is con-
ducted in Section 7. We conclude in Section 8 with some pointers to future
work.

2 A Unified Theoretical Framework for Parameter Learning of
Bayesian Network Classifiers

We start by discussing Bayesian Network classifiers in the following section.

2.1 Bayesian Network Classifiers

A BN B = 〈G, Θ〉, is characterized by the structure G (a directed acyclic
graph, where each vertex is an attribute, X), and a set of parameters Θ, that
quantifies the dependencies within the structure. The parameter Θ, contains
a set of parameters for each vertex in G: θxi|Πi(x), where Πi(.) is a function
which given the datum x = 〈x1, . . . , xn〉 as its input, returns the values of
the attributes which are the parents of node i in structure G. For notational
simplicity, instead of writing θXi=xi|Πi(x), we write θxi|Πi(x). A BN B com-
putes the joint probability distribution as: PB(x) =

∏n
i=0 θxi|Πi(x). The goal

of developing BN is to predict the value of some class variable, say X0. We
will assume that the first attribute is the class attribute and denote it with Y
(i.e., X0 = Y ), and denote a value for that attribute by y, where y ∈ Y. For a
BN defining PB(x, y), the corresponding conditional distribution PB(y|x) can
be written as:

PB(y|x) =
PB(y,x)

PB(x)
=

θy|Π0(x)

∏n
i=1 θxi|y,Πi(x)∑ | Y |

y′ θy′|Π0(x)

∏n
i=1 θxi|y′,Πi(x)

. (1)

If the class attribute does not have any parents, we write: θy|Π0(x) = θy.

Given a set of data points D = {x(1), . . . ,x(N)}, the Log-Likelihood (LL)
of B is:

LL(B) =

N∑
j=1

log PB(y(j),x(j)),

=

N∑
j=1

(
log θy(j)|Π0(x(j)) +

n∑
i=1

log θ
x
(j)
i |Πi(x(j))

)
, (2)

with
∑
y∈Y

θy|Π0(x) = 1, and
∑

xi∈dom(Xi)

θxi|Πi(x) = 1. (3)

Maximizing Equation 2 to optimize the parameters (θ) is known as maximum-
likelihood estimation.
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Theorem 1 With constraints in Equation 3, Equation 2 is maximized when
θxi|Πi(x) corresponds to empirical estimates of probabilities from the data, that
is, θy|Π0(x) = PD(y|Π0(x)) and θxi|Πi(x) = PD(xi|Πi(x)).

Proof See Appendix A.

The parameters obtained by maximizing Equation 2 (and fulfilling the con-
straints in Equation 3) are typically known as ‘Generative’ estimates of the
probabilities.

2.2 Class-Conditional BN (CCBN) Models

Instead of maximizing Equation 2, for classification problems, maximizing
Conditional Log-Likelihood (CLL) is generally a more effective objective func-
tion since it directly optimizes the mapping from features to class labels. The
CLL can be defined as:

CLL(B) =

N∑
j=1

log PB(y(j)|x(j)),

which is equal to:

=

N∑
j=1

log PB(y(j),x(j))− log

| Y |∑
y′

PB(y′,x(j))


=

N∑
j=1

(
log θy(j)|Π0(x(j)) +

n∑
i=1

log θ
x
(j)
i |Πi(x(j))

)
−

log

 | Y |∑
y′

θy′|Π0(x(j))

n∏
i=1

θxi|y′,Πi(x(j))

 . (4)

The only difference between Equation 2 and Equation 4 is the presence of the

normalization factor in the latter, that is: log
∑ | Y |
y′ PB(y′,x(j)). Due to this

normalization, the values of θ maximizing Equation 4 are not the same as those
that maximize Equation 2. We provide two intuitions about “why maximizing
the CLL would provide a better model of the conditional distribution”:

1. It allows the parameters to be set in such a way as to reduce the effect of
the conditional attribute independence assumption that is present in the
BN structure and that might be violated in data.

2. We have LL(B) = CLL(B) + LL(B\y). If optimizing LL(B), most of the
attention will be given to LL(B\y) – because CLL(B)� LL(B\y) – which
will often lead to poor estimates for classification.
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Note, that if the structure is correct, maximizing both LL and CLL should
lead to the same results [20]. There is unfortunately no closed-form solution for
θ such that the CLL would be maximized; we thus have to resort to numerical
optimization methods over the space of parameters.

Like any Bayesian network model, a class-conditional BN model is com-
posed of a graphical structure and of parameters (θ) quantifying the depen-
dencies in the structure. For any BN B, the corresponding CCBN will be
based on graph B∗ (where B∗ is a sub-graph of B) whose parameters are opti-
mized by maximizing the CLL. We present below a slightly rephrased definition
from [19]:

Definition 1 A class-conditional Bayesian network model MB∗ is the set of
conditional distributions based on the network B∗ equipped with any strictly
positive parameter set θB

∗
; that is the set of all functions from (X1, X2, ...., Xn)

to a distribution on Y takes the form of Equation 1.

This means that the nodes in B∗ are nodes comprising only the Markov blan-
ket of the class y. However, in most cases, for BN classifiers, a structure is
learned without the class attribute and, afterwards, class is added as the par-
ent of all the attributes. Second, class does not take any other node as its
parents. This has the effect that each attribute is in the Markov blanket of the
class. We will assume that the parents of class attribute constitute an empty
set and, therefore, replace parameters characterizing the class attribute from
θy(j)|Π0(x(j)) with θy(j) . We will also drop the superscript j in equations for
clarity.

3 Parameterization 1: Discriminative CCBN Model

Logistic regression (LR) is the CCBN model associated to the NB structure
optimizing Equation 1. Typically, LR learns a weight for each attribute-value
(per-class). However, one can extend LR by considering all or some subset of
possible quadratic, cubic, or higher-order features [12,25]. We define discrim-
inative CCBN as:

Definition 2 A discriminative class-conditional Bayesian Network model
MB∗d is a CCBN such that Equation 1 is re-parameterized in form of pa-
rameter β such that β = log θ and parameter β is obtained by maximizing
the CLL.

Let us re-define PB(y|x) in Equation 4 and write it on a per datum basis as:

PB(y|x) =
exp(log θy +

∑n
i=1 log θxi|y,Πi(x))∑ | Y |

y′ exp(log θy′ +
∑n
i=1 log θxi|y′,Πi(x))

. (5)

In light of Definition 2, let us define a parameter β• that is associated with
each parameter θ• in Equation 5, such that:

log θy = βy, and log θxi|y,Πi(x) = βy,xi,Πi .
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Now Equation 5 can be written as:

PB(y|x) =
exp(βy +

∑n
i=1 βy,xi,Πi)∑ | Y |

y′=1 exp(
∑
y′ βy′ +

∑n
i=1 βy′,xi,Πi)

. (6)

One can see that this has led to the logistic function of the form 1
1+exp(−βTx)

for

binary classification and softmax
exp(−βy

Tx)∑′
y(exp(−βy′

Tx))
for multi-class classification.

Such a formulation is a Logistic Regression classifier. Therefore, we can state
that a discriminative CCBN model with naive Bayes structure is a (vanilla)
logistic regression classifier.

In light of Definition 2, CLL optimized byMB∗d , on a per-datum-basis, can
be specified as:

log PB(y|x) = (βy +

n∑
i=1

βy,xi,Πi)−

log(

| Y |∑
y′=1

exp(βy′ +

n∑
i=1

βy′,xi,Πi)). (7)

Now, we will have to rely on an iterative optimization procedure based on
gradient-descent. Therefore, let us first calculate the gradient of parameters in
the model. The gradient of the parameters in Equation 7 can be computed as:

∂ log PB(y|x)

∂βy:k
= (1y=k − P(k|x)) , (8)

for the class parameters. For the other parameters, we can compute the gra-
dient as:

∂ log PB(y|x)

∂βy:k,xi:j,Πi:l
= (1y=k − P(k|x)) 1xi=j1Πi=l, (9)

where 1 is the indicator function. Note, that we have used the notation
βy:k,xi:j,Πi:l to denote that class y has the value k, attribute xi has the value
j and its parents (Πi) have the value l. If the attribute has multiple parent
attributes, then l represents a combination of parent attribute values.

4 Parameterization 2: Extended CCBN Model

The name Extended CCBN Model is inspired from [8], where the method
named Extended Logistic Regression (ELR) is proposed. ELR is aimed at ex-
tending LR and leads to discriminative training of BN parameters. We define:

Definition 3 [8] – An extended class-conditional Bayesian Network model
MB∗e is a CCBN such that the parameters (θ) satisfy the constraints in Equa-
tion 3 and is obtained by maximizing the CLL in Equation 4.
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Let us re-define PB(y|x) in Equation 4 on a per-datum-basis as:

log PB(y|x) = (log θy +

n∑
i=1

log θxi|y,Πi(x))−

log

| Y |∑
y′

(θy′
n∏
i=1

θxi|y′,Πi(x)). (10)

Let us consider the case of optimizing parameters associated with the at-
tributes θxi|y,Πi(x). Parameters associated with the class can be obtained sim-
ilarly. We will re-write θxi|y,Πi(x) as θxi:j|y:k,Πi:l which represents attribute i
(xi) taking value j, class (y) taking value k and its parents (Πi) takes value l.
Now we can write the gradient as:

∂ log PB(y|x)

∂θxi:j′|y:k,Πi:l
=

(
1y=k1xi=j′1Πi=l
θxi:j′|y:k,Πi:l

− P̂(k|x)1xi=j′1Πi=l
θxi:j′|y:k,Πi:l

)
,

=
1xi=j′1Πi=l
θxi:j′|y:k,Πi:l

(
1y=k − P̂(k|x)

)
.

Enforcing constraints that
∑
j′ θxi:j′|y:k,Πi:l = 1, we introduce a new parame-

ters β and re-parameterize as:

θxi:j′|y:k,Πi:l =
exp(βxi:j′|y:k,Πi:l)∑
j′′ exp(βxi:j′′|y:k,Πi:l)

. (11)

It will be helpful if we differentiate θxi:j′|y:k,Πi:l with respect to βxi:j|y:k,Πi:l

(the use of notation j and j′ will become obvious when we apply the chain
rule afterwards), we get:

∂θxi:j′|y:k,Πi:l

∂βxi:j|y:k,Πi:l
=

exp(βxi:j′|y:k,Πi:l)1y=k1xi=j′=j1Πi=l∑
j′′ exp(βxi:j′′|y:k,Πi:l)

−
exp(βxi:j′|y:k,Πi:l) exp(βxi:j′′|y:k,Πi:l)1xi=j′′=j1Πi=l(∑

j′′ exp(βxi:j′′|y:k,Πi:l)
)2 ,

= 1y=k1xi=j′=j1Πi=lθxi:j|y:k,Πi:l −
1xi=j′′=j1Πi=lθxi:j′|y:k,Πi:lθxi:j|y:k,Πi:l,

= (1y=k − θxi:j|y:k,Πi:l)1xi=j1Πi=lθxi:j′|y:k,Πi:l.

Applying the chain rule:

∂ log PB(y|x)

∂βxi:j|y:k,Πi:l
=
∑
j′

∂ log P(y|x)

∂θxi:j′|y:k,Πi:l

∂θxi:j′|y:k,Πi:l

∂βxi:j|y:k,Πi:l
,

= (1y=k1xi=j1Πi=l − 1xi=j1Πi=lP(k|x))−

θxi:j|y:k,Πi:l

∑
j′

(1y=k1xi=j′1Πi=l − 1xi=j′1Πi=lP(k|x)) , (12)
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we get the gradient of log PB(y|x) with respect to parameter βxi:j|y:k,Πi:l. Now
one can use the transformation of Equation 11 to obtain the desired parameters
of extended CCBN. Note that Equation 12 corresponds to Equation 9. The
only difference is the presence of the normalization term that is subtracted
from the gradient in Equation 12.

5 Parameterization 3: Combined generative/discriminative
parameterization: Weighted CCBN Model

We define a weighted CCBN model as follows:

Definition 4 A weighted conditional Bayesian Network model MB∗w is a
CCBN such that Equation 1 has an extra weight parameter associated with
every θ such that it is re-parameterized as: θw, where parameter θ is learned
by optimizing the LL and parameter w is obtained by maximizing the CLL.

In light of Definition 4, let us re-define Equation 1 to incorporate weights as:

PB(y|x) =
θ
wy
y
∏n
i=1 θ

wy,xi,Πi
xi|y,Πi(x)∑ | Y |

y′ θ
wy′

y′
∏n
i=1 θ

wy′,xi,Πi
xi|y′,Πi(x)

. (13)

The corresponding weighted CLL can be written as:

log PB(y|x) = (wy log θy +

n∑
i=1

wy,xi,Πi log θxi|y,Πi(x))−

log

| Y |∑
y′

(θ
wy
y′

n∏
i=1

θ
wy,xi,Πi
xi|y′,Πi(x)). (14)

Note, that Equation 14 is similar to Equation 10 except for the introduction
of weight parameters. The flexibility to learn parameter θ in a prior gener-
ative process of learning greatly simplifies subsequent calculations of w in a
discriminative search. Since w is a free-parameter and there is no sum-to-
one constraint, its optimization is simpler than for MB∗e . The gradient of the
parameters in Equation 14 can be computed as:

∂ log PB(y|x)

∂wy:k
= (1y=k − P(k|x)) log θy|Π0(x), (15)

for the class y, while for the other parameters:

∂ log PB(y|x)

∂wy:k,xi:j,Πi:l
=(1y=k−P(k|x)) 1xi=j1Πi=l log θxi|y,Πi(x). (16)

One can see that Equations 15 and 16 correspond to Equations 8 and 9. The
only difference between them is the presence of the log θ• factor in the MB∗w

case.
A brief summary of these parameterizations is also given in Table 1.
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5.1 Combined Discriminative/Generative Regularization

Contrary to MB∗d and MB∗e , MB∗w parameterization offers an elegant frame-
work for blending discriminative and generative learned parameters. With reg-
ularization, one can interpolate between the two paradigms. For example, let
us modify Equation 13 as:

PB(y|x) =
1

Z
exp(wy log θy +

n∑
i=1

wy,xi,Πi log θxi|y,Πi(x)) +
λ

2
‖w‖2,

where Z is the normalization constant and λ is the parameter controlling reg-
ularization. The new term will penalize large (and heterogeneous) parameter
values. Larger λ values will cause the classifier to progressively ignore the data
and assign more uniform class probabilities. Alternatively one could penalize
deviations from the BN conditional independence assumption by centering the
regularization term at one rather than zero:

PB(y|x) =
1

Z
exp(wy log θy +

n∑
i=1

wy,xi,Πi log θxi|y,Πi(x)) +
λ

2
‖w − 1‖2.

Doing so allows the regularization parameter λ to be used to interpolate be-
tween the generative model and the discriminative model.

5.2 On Initialization of Parameters

Initialization of the parameters, which sets the starting point for the opti-
mization, is an orthogonal element to the speed of convergence that this paper
addresses. Obviously, a better starting point (in terms of CLL), will make the
optimization easier and conversely. In this paper, we will study two different
starting points for the parameters:

Zeros This is the standard initialization where all the optimized parameters
are initialized with 0 [18].

Generative estimates Given that our approach utilizes generative esti-
mates, a fair comparison with other approaches should study starting from
the generative estimates for all approaches. This will correspond to the θs
initialized to the generative estimates for Parameterizations 1 and 2, and
to the ws initialized to one for Parameterization 3.

Note that in the “Zeros” case, only our proposed Weighted CCBN parametriza-
tion requires a first (extra) pass over the dataset to compute the generative
estimates, while for the “Generative estimates” case all methods require this
pass (when we report training time, we always report the full training time).
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6 Related Work

There have been several comparative studies of discriminative and generative
structure and parameter learning of Bayesian Networks [7,9,15]. In all these
works, generative parameter training is the estimation of parameters based on
empirical estimates whereas discriminative training of parameters is actually
the estimation of the parameters of CCBN models such asMB∗e orMB∗d . The
MB∗e model was first proposed in [7]. Our work differs from these previous
works as our goal is to highlight different parameterization of CCBN models
and investigate their inter-relationship. Particularly, we are interested in the
learning of parameters corresponding to a weighted CCBN model.

An approach for discriminative learning of the parameters of BN based on
discriminative computation of frequencies from the data is presented in [21].
Discriminative Frequency Estimates (DFE) are computed by injecting a dis-
criminative element to generative computation of the probabilities. During the
frequencies computation process, rather than updating the count tables as in-
dividual datum arrives, DFE estimates how well the current classifier does on
the arriving data point and then update the tables only in proportion to the
classifier’s performance. For example, they propose a simple error measure, as:
L(x) = P(y|x)− P̂(y|x), where P(y|x) is the true probability of class y given
the datum x, and P̂(y|x) is the predicted probability. The counts are updated
as: θt+1

ijk = θtijk + L(x). Several iterations over the dataset are required. The
algorithm is inspired from Perceptron based training and is shown to be an
effective discriminative parameter learning approach.

7 Empirical Results

In this section, we compare and analyze the performance of our proposed algo-
rithms and related methods on 72 natural domains from the UCI repository of
machine learning [5]. The experiments are conducted on the datasets described
in Table 2.

There are a total of 72 datasets, 41 datasets with less than 1000 instances,
21 datasets with between 1000 and 10000 instances, and 11 datasets with more
than 10000 instances. Each algorithm is tested on each dataset using 5 rounds
of 2-fold cross validation. 2-fold cross validation is used in order to maximize
the variation in the training data from trial to trial, which is advantageous
when estimating bias and variance. Note that the source code with running
instructions is provided as a supplementary material to this paper.

We compare four metrics: 0-1 Loss, RMSE, Bias and Variance. We report
Win-Draw-Loss (W-D-L) results when comparing the 0-1 Loss, RMSE, bias
and variance of two models. A two-tail binomial sign test is used to determine
the significance of the results. Results are considered significant if p ≤ 0.05.
We report results on two categories of datasets. The first category, labeled
All, consists of all datasets in Table 2. The second category, labeled Big, con-
sists of datasets that have more than 10000 instances. Numeric attributes are
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Domain Case Att Class Domain Case Att Class
Poker-hand 1175067 11 10 Annealing 898 39 6
Covertype 581012 55 7 Vehicle 846 19 4
Census-Income(KDD) 299285 40 2 PimaIndiansDiabetes 768 9 2
Localization 164860 7 3 BreastCancer(Wisconsin) 699 10 2
Connect-4Opening 67557 43 3 CreditScreening 690 16 2
Statlog(Shuttle) 58000 10 7 BalanceScale 625 5 3
Adult 48842 15 2 Syncon 600 61 6
LetterRecognition 20000 17 26 Chess 551 40 2
MAGICGammaTelescope 19020 11 2 Cylinder 540 40 2
Nursery 12960 9 5 Musk1 476 167 2
Sign 12546 9 3 HouseVotes84 435 17 2
PenDigits 10992 17 10 HorseColic 368 22 2
Thyroid 9169 30 20 Dermatology 366 35 6
Pioneer 9150 37 57 Ionosphere 351 35 2
Mushrooms 8124 23 2 LiverDisorders(Bupa) 345 7 2
Musk2 6598 167 2 PrimaryTumor 339 18 22
Satellite 6435 37 6 Haberman’sSurvival 306 4 2
OpticalDigits 5620 49 10 HeartDisease(Cleveland) 303 14 2
PageBlocksClassification 5473 11 5 Hungarian 294 14 2
Wall-following 5456 25 4 Audiology 226 70 24
Nettalk(Phoneme) 5438 8 52 New-Thyroid 215 6 3
Waveform-5000 5000 41 3 GlassIdentification 214 10 3
Spambase 4601 58 2 SonarClassification 208 61 2
Abalone 4177 9 3 AutoImports 205 26 7
Hypothyroid(Garavan) 3772 30 4 WineRecognition 178 14 3
Sick-euthyroid 3772 30 2 Hepatitis 155 20 2
King-rook-vs-king-pawn 3196 37 2 TeachingAssistantEvaluation 151 6 3
Splice-junctionGeneSequences 3190 62 3 IrisClassification 150 5 3
Segment 2310 20 7 Lymphography 148 19 4
CarEvaluation 1728 8 4 Echocardiogram 131 7 2
Volcanoes 1520 4 4 PromoterGeneSequences 106 58 2
Yeast 1484 9 10 Zoo 101 17 7
ContraceptiveMethodChoice 1473 10 3 PostoperativePatient 90 9 3
German 1000 21 2 LaborNegotiations 57 17 2
LED 1000 8 10 LungCancer 32 57 3
Vowel 990 14 11 Contact-lenses 24 5 3
Tic-Tac-ToeEndgame 958 10 2

Table 2: Details of Datasets (UCI Domains)

discretized by using the Minimum Description Length (MDL) discretization
method [4]. A missing value is treated as a separate attribute value and taken
into account exactly like other values. Optimization is done with L-BFGS [2]1
2.

We experiment with three Bayesian network structures that is: naive Bayes
(NB), Tree-Augmented naive Bayes (TAN) and k-Dependence Bayesian Net-
work (KDB) with K = 1. We denote MB∗w , MB∗d and MB∗e with naive Bayes

structure as NBw, NBd and NBe respectively. With TAN structure, MB∗w ,
MB∗d andMB∗e are denoted as TANw, TANd and TANe. With KDB (K = 1),

MB∗w , MB∗d and MB∗e are denoted as KDB-1w, KDB-1d and KDB-1e.

As discussed in Section 5.2, we initialize the parameters to the log of the
MAP estimates (or parameters optimized by generative learning). The ‘(I)’ in

1 The algorithm terminates when improvement in the objective function, given by
(ft−ft+1)

max{|ft|,|ft+1|,1}
, drops below 10−32, or the no. of iterations exceeds 10000 [26].

2 The original L-BFGS implementation of [2] from http://users.eecs.northwestern.

edu/~nocedal/lbfgsb.html is used.
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Fig. 1: Comparative scatter of No. of iterations (left), training time (middle) and RMSE
(right) for NBw, NBd and NBe on All datasets (Top Row) and on Big datasets (Bottom
Row). NBw on the X-axis, NBd (red-cross) and NBe (green-triangle) on the Y-axis.

the label represents this initialization. An absence of ‘(I)’ means the parameters
are initialized to zero.

7.1 NB Structure

Comparative scatter plots on all 72 datasets for 0-1 Loss, RMSE and training
time values for NBw, NBd and NBe are shown in Figure 1. Training time
plots are on the log scale. The plots are shown separately for Big datasets. It
can be seen that the three parameterizations have a similar spread of RMSE
values, however, NBw is greatly advantaged in terms of its training time. This
computational advantage arises from the relative convergence properties of
the three parameterizations and is discussed in Section 7.4. Given that NBw

achieves equivalent accuracy with much less computation indicates that it is
a more effective parameterization than NBd and NBe.

The geometric means of the 0-1 Loss, RMSE and training time results
are shown in Figure 2. Note, results are normalized with respect to NB, and,
therefore, NB averaged results are all 1. They are also plotted on the graph
for reference. Note, training time results are in log-scale. It can be seen that
discriminative methods on Big datasets are an order of magnitude better than
generative learning in terms of 0-1 Loss. Though discriminative training results
in greatly improved 0-1 Loss and RMSE error, this gain in accuracy comes at
a considerable cost in training time.
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Fig. 2: Geometric mean of No. of iterations, training time and RMSE for NB, NBw, NBd

and NBe on All and Big datasets. Results are normalized with respect to NB.
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Fig. 3: Comparative scatter of No. of iterations (left), training time (middle) and RMSE
(right) for TANw, TANd and TANe on All datasets (Top Row) and on Big datasets (Bottom
Row). TANw on the X-axis, TANd (red-cross) and TANe (green-triangle) on the Y-axis.

7.2 TAN Structure

Figure 3 shows the comparative spread of 0-1 Loss, RMSE and training time
of TANw, TANd and TANe on All and Big datasets. A trend similar to that
of NB can be seen. With a similar spread of 0-1 Loss and RMSE among the
three parameterizations, training time is greatly improved for TANw when
compared with TANd and TANe. Geometric average of the 0-1 Loss, RMSE
and training time results are shown in Figure 4. Note, results are normalized
with respect to TAN, and, therefore, TAN averaged results are all equal to 1.
They are also plotted on the graph for reference.
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Fig. 5: Comparative scatter of No. of iterations (left), training time (middle) and RMSE
(right) for KDB-1w, KDB-1d and KDB-1e on All datasets (Top Row) and on Big datasets
(Bottom Row). KDB-1w on the X-axis, KDB-1d (red-cross) and KDB-1e (green-triangle)
on the Y-axis.

7.3 KDB (K = 1) Structure

Figure 5 shows the comparative spread of 0-1 Loss, RMSE and training time
of KDB-1w, KDB-1d and KDB-1e on All and Big datasets. Like NB and TAN,
it can be seen that a similar spread of 0-1 Loss and RMSE is present among
the three parameterizations of discriminative learning. Similarly, training time
is greatly improved for KDB-1w when compared with KDB-1d and KDB-1e.
Geometric average of the 0-1 Loss, RMSE and training time results are shown
in Figure 6. Note, results are normalized with respect to KDB (K = 1), and,
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Fig. 6: Geometric mean of No. of iterations, training time and RMSE for KDB-1w, KDB-1d

and KDB-1e on All and Big datasets. Results are normalized with respect to KDB-1.

therefore, KDB (K = 1) averaged results are all equal to 1. They are also
plotted on the graph for reference.

7.4 Convergence Analysis

A comparison of the convergence of Negative Log-Likelihood (NLL) of the
three parameterizations on some sample datasets with NB, TAN and KDB
(K = 1) structure is shown in Figure 7 and 8. In Figure 7, parameters are
initialized to zero, whereas, in Figure 8, parameters are initialized to the log
of the MAP estimates. It can be seen that for all three structures and for both
initializations, MB∗w not only converges faster but also reaches its asymptotic
value much quicker than the MB∗d and MB∗e . The same trend was observed
on all 73 datasets.

To quantify how muchMB∗w is faster than the other two parameterizations,
we plot a histogram of the number of iterations it takes MB∗d and MB∗e after
five iterations to reach the negative log-likelihood that MB∗w achieved at fifth
iteration. If the three parameterizations follow similar convergence, one should
expect many zeros in the histogram. Note that if after fifth iteration, NLL of
MB∗w is greater than that of MB∗d , we we plot the negative of the number
of iterations it takes MB∗w to reach the NLL of MB∗d . Similarly, if after fifth
iteration, NLL ofMB∗w is greater than that ofMB∗e , we we plot the negative of
the number of iterations it takesMB∗w to reach the NLL ofMB∗e . Figures 9, 10
and 11 show these histogram plots for NB, TAN and KDB (K = 1) structure
respectively. It can be seen that MB∗w (with all three structures) achieves a
NLL that otherwise, will take on average 10 more iterations over the data for
MB∗d and 15 more iterations forMB∗e . This is an extremely useful property of
MB∗w especially for big data where iterating through the dataset is expensive,
but the more complex network structures are difficult to optimize.

7.5 Comparison with MAP

The purpose of this section is to compare the performance of the discrimi-
native learning with that of generative learning. In Table 3, we compare the
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Fig. 7: Comparison of rate of convergence on the four biggest datasets for NB (top row),
TAN (middle row) and KDB (K = 1) (bottom row) structures. The X-axis is on log scale.
Parameters are initialized to zero.

performance of NBw with NB (i.e., naive Bayes with MAP estimates of proba-
bilities), TANw with TAN (i.e., TAN with MAP estimates of probabilities) and
KDB-1w with KDB (K = 1) (i.e., KDB with MAP estimates of probabilities).
We use NBw, TANw and KDB-1w as a representative of discriminative learning
- since MB∗w , MB∗d and MB∗e have similar 0-1 Loss and RMSE profile. It can
be see that the discriminative learning of parameters has significantly lower
bias but higher variance. On big datasets, it can be seen that discriminative
learning results in much better 0-1 Loss and RMSE performance.

Note that though discriminative learning (optimizes the parameters char-
acterizing CCBN) has better 0-1 Loss and RMSE performance than gener-
ative learning (optimizing joint probability), – generative learning has the
advantage of being extremely fast as it incorporates counting of sufficient
statistics from the data. Another advantage of generative learning is its
capability of back-off in case a certain combination does not exist in the
data. For example, TAN and KDB classifiers if have not encountered a
< feature-value, parent-value, class-value > combination at training
time can resort back to < feature-value, class-value > at testing time.
For example TAN classifier can resort back to NB and NB can resort back to
class prior probabilities. Such elegantly back-tracking is missing from discrimi-
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Fig. 8: Comparison of rate of convergence on the four biggest datasets for NB (top row),
TAN (middle row) and KDB (K = 1) (bottom row) structures. The X-axis is on log scale.
Parameters are initialized to the log of the MAP estimates.

NBw vs. NB TANw vs. TAN KDB-1w vs. KDB-1

W-D-L p W-D-L p W-D-L p

All Datasets

Bias 62/3/7 <0.001 50/4/18 <0.001 54/5/13 <0.001

Variance 19/3/50 <0.001 21/2/49 0.011 19/4/49 <0.001

0-1 Loss 45/4/23 0.010 34/3/35 1 39/4/29 0.275

RMSE 45/3/24 0.015 25/1/46 0.017 29/2/41 0.1882

Big Datasets

0-1 Loss 11/1/0 <0.001 11/1/0 <0.001 11/0/1 <0.001

RMSE 11/0/1 <0.001 11/0/1 <0.001 11/0/1 <0.001

Table 3: Win-Draw-Loss: NBw vs. NB, TANw vs. TAN and KDB-1w vs. KDB-
1. Significant results are shown in bold.

native learning. If a certain combination does not exist in the data, parameters
associated to that parameter will not be optimized and will remain fixed to
the initialized value (for example 0). A discriminative classifier will have no
way of handling unseen combinations but to ignore the combination if that
combination occurs in the testing data. How to incorporate such hierarchical
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Fig. 9: Number of iterations (after 5 iterations), it takes NBd and NBe to reach NLL that
NBw achieved after 5 iterations. If NLL of NBw is less that that of NBd or NBe, number of
iterations it takes NBw to reach that of NBd (denoted as NBw-d) and that of NBe (denoted
as NBw-e) are plotted with negative sign.

learning with discriminative learning is the goal of future research as will be
discussed in Section 8.

8 Conclusion and Future Work

In this paper, we propose an effective parameterization of BN. We present a
unified framework for learning the parameters of Bayesian network classifiers.
We formulate three different parameterizations and compare their performance
in terms of 0-1 Loss, RMSE and training time each parameterization took to
converge. We show with NB, TAN and KDB structure that the proposed
weighted parameterization has similar 0-1 Loss and RMSE to the other two
but significantly faster convergence. We also show that it not only has faster
convergence but it also asymptotes to its global minimum much quicker than
the other two parameterizations. This is desirable when learning from huge
quantities of data with Stochastic Gradient Descent (SGD). It is also shown
that discriminative training of BN classifiers also leads to lower bias than the
generative parameter learning.

We plan to conduct following future work as the result of this study:

– The three parameterizations presented in this work learn a weight for
each attribute-value-per-class-value-per-parent-values. Contrary to MB∗d

andMB∗e ,MB∗w parameterization can generalize parameters. For example,
once MAP estimates of probabilities are learned, one can learn a weight:
a) for each attribute only (i.e., same weight for all attribute-values, for all
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Fig. 10: Number of iterations (after 5 iterations), it takes TANd and TANe to reach NLL
that TANw achieved after 5 iterations. If NLL of TANw is less that that of TANd or TANe,
number of iterations it takes TANw to reach that of TANd (denoted as TANw-d) and that
of TANe (denoted as TANw-e) are plotted with negative sign.

class values and for all parent values), b) for each attribute-value only, c) for
each attribute-value-per-class-value, d) for each attribute-value-per-class-
value-per-parent, etc. Such parameter generalization could offer additional
speed-up of the training and is a promising avenue for future research.

– How to handle combinations of 〈feature-value, parent-value, class-value〉
that have not been seen at training time is one of the weaker properties
of discriminative learning. We plan to design an hierarchical algorithm of
discriminative learning that can learn lower-level discriminative weights
and can back-off from higher levels if a combination is not observed in the
training data.

– We plan to conduct an extended analysis of BN models that can capture
higher-order interactions. Because the CLL is not convex for most of these
models [19], it falls outside the scope of this paper. This does, however,
suggest inviting avenues for big data research, in which context low-bias
classifiers are required.

9 Code and Datasets

All the datasets used in this paper are in the public domain
and can be downloaded from [5]. Code with running instructions
can be download from https://www.dropbox.com/sh/vd6cma61eibuem0/

AACD11ylYnqIXbBWm2DKt7ZYa?dl=0.
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Fig. 11: Number of iterations (after 5 iterations), it takes KDB-1d and KDB-1e to reach
NLL that KDB-1w achieved after 5 iterations. If NLL of KDB-1w is less that that of KDB-1d

or KDB-1e, number of iterations it takes KDB-1w to reach that of KDB-1d (denoted as
KDB1w-d) and that of KDB-1e (denoted as KDB1w-e) are plotted with negative sign.
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A Proof of Therorem 1

Let us use Lagrange multipliers for constraints in Equation 3 to be placed in Equation 2.
Now, we can maximize the resulting objective function: LL(B) + λ0(1−

∑
y∈Y θy|Π0(x)

) +∑n
i λi(1−

∑
xi∈dom(Xi)

θxi|Πi(x)) by first computing its derivative as:

∂LL(B)

∂θxi|Πi(x)
=

N∑
j=1

1
x
(j)
i =xi

1y(j)=y1Π(j)
i (x)=Πi(x)

θ
x
(j)
i |Πi(x)

− λi.

and then setting it to zero. This will lead to θxi|Πi(x) =

∑N
j=1 Nxi,y,Πi(x)

λi
, where

Nxi,y,Πi(x) is the empirical count of instances with attribute i taking value xi, class tak-
ing value y and parents taking value Πi(x). Placing θxi|Πi(x) value in Equation 3, we get:∑
xi∈dom(Xi)

∑N
j=1 Nxi,y,Πi(x)

λi
= 1, which implies: λi =

∑
xi∈dom(Xi)

∑N
j=1Nxi,y,Πi(x).

Therefore, λi = Ny,Πi(x). Hence we can write:

θxi|Πi(x) =
Nxi,y,Πi(x)

Ny,Πi(x)
. Similarly: θy|Π0(x) =

Ny,Π0(x)

NΠ0(x)

.
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This equals empirical estimates of probabilities from the data: PD(xi|Πi(x)).
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