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Abstract A rich variety of models are now in use for unsupervised modelling
of text documents, and, in particular, a rich variety of graphical models exist,
with and without latent variables. To date, there is inadequate understanding
about the comparative performance of these, partly because they are subtly
different, and they have been proposed and evaluated in different contexts.
This paper reports on our experiments with a representative set of state of the
art models: chordal graphs, matrix factorisation, and hierarchical latent tree
models. For the chordal graphs we use different scoring functions. For matrix
factorisation models we use different hierarchical priors, asymmetric priors on
components. We use Boolean matrix factorisation rather than topic models
so we can do comparable evaluations. The experiments perform a number of
evaluations: probability for each document, omni-directional prediction which
predicts different variables, and anomaly detection. We find that matrix fac-
torisation performed well at anomaly detection but poorly on the prediction
task. Chordal graph learning performed the best generally, and probably due
to its lower bias, often out-performed hierarchical latent trees.

Keywords graphical models · document analysis · unsupervised learning ·
matrix factorisation · latent variables · evaluation

1 Introduction

Research in previous decades has led to an embarrassment of riches when it
comes to alternative unsupervised graphical models for text documents. There
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are early clustering models (Aggarwal and Zhai, 2012), non-probabilistic se-
mantic spaces built using sliding windows to build co-occurrence statistics
(Lund and Burgess, 1996), many varieties of word and sentence embeddings
built using deep neural networks (Mikolov et al, 2013), different kinds of topic
models (Blei, 2012), augmented with document structure, bibliographic and
semantic relationships (Lim and Buntine, 2016), and related areas of matrix
factorisation (Cai et al, 2011) and tree-structured graphical models (Liu et al,
2014). This list only considers models based on bag-of-words and similar as-
sumptions, and does not begin to consider those also modelling the sentence
structure built using deep neural networks, sometimes supported by parse
structure (Collobert and Weston, 2008; Socher et al, 2012).

Earliest graphical models were Bayesian networks over discrete variables,
Gaussians or a mixture and a variety of algorithms have been developed given
the convenient exponential family nature of the models (Heckerman and Chick-
ering, 1995). Standard implementations, however, were usually restricted to
less than 100 variables. More recently, improved data structures and algo-
rithms have been developed that allow models to be built with more variables.
Branch and bound techniques allow best model search (Suzuki and Kawahara,
2017), but for thousands of discrete variables one uses cached local search and
restriction to chordal graphs (Petitjean and Webb, 2016). The algorithm for
doing this is known as Chordalysis and it allows learning graphical models
on text corpora with vocabulary sizes on the order of thousands. However,
Chordalysis was initially proposed for association discovery and the metrics
(i.e. SMT, G-tests) sought to minimize the probability of false discoveries.
Therefore, new metrics are required when using Chordalysis to learn statisti-
cal models on text aiming to maximise predictability.

The research question we seek answers for in this work is as follows: could
Chordalysis models be a competitive alternative to existing latent variable mod-
els on text prediction?

In this paper we restrict ourselves to methods that correspond to graphi-
cal models using a bag-of-words representation. However, they still have many
variations: data can be Boolean or count, bagged or sequential, different forms
of latent variables can be included, and document length can be modelled
or excluded. To keep things comparable, we restrict our experiments to the
Boolean representation of bag of words data, and select/modify algorithms
accordingly. Topic models are comparable to matrix factorisation (Gaussier
and Goutte, 2005) (ignoring document length modelling) so we use matrix
factorisation (Zhou, 2015) instead of topic modelling. Another type of graph-
ical model built on binarised text is the Hierarchical latent tree analysis
(HLTA) (Liu et al, 2014; Chen et al, 2017). These graphical models yield
intriguing “local” topics, that only interact with a limited set of variables.

To the best of our knowledge, no prior work has looked more broadly
at comparing these models. The contributions of this paper therefore are as
follows:
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– we do the first performance evaluation of three different bag-of-word doc-
ument models across three different tasks;

– we introduce the anomaly detection task, well known in machine learning
but not used for these kinds of models;

– we show that matrix factorisation performs well on anomaly detection but
not so well on prediction

– we show that Chordalysis generally beats HLTA but believe that is ex-
plained by the lower bias available with Chordalysis.

In Section 2 we review a number of different graphical models suitable for
text and explain our particular choices. In Section 3 we discuss the experimen-
tal evaluation. There are a number of subtleties here so we discuss alternatives.
The results of experiments are reported in Sections 4–6.

2 Graphical Models for Text
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Fig. 1 Examples of the three models for a single document. See text for explanation.

The three graphical models selected for comparison, Chordalysis, HLTA
and BPFA are depicted in Figure 1. This figure ignores other model parameters
and hyper-parameters, and has six simple words “a”, “b”, “c”, “d”, “e” and
“f”. Green is Chordalysis where the structure is learnt but restricted to be
a chordal graph (which has many valid variable orders). Red is HLTA where
the structure is learnt but restricted to be a tree with three latent variable (z1
etc.). Blue is BPFA where the structure is fixed, the Booleans are computed
from the latent counts (xa etc.), and correlations are got indirectly via the
document topic proportions θ.
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2.1 Chordalysis Graphical Models

Chordalysis (Petitjean and Webb, 2015) is a forward selection algorithm to
learn the structure of probabilistic models from discrete data. It leverages the
decomposability of chordal graphs to scale the learning of statistical models
up to thousands of variables. This method also requires a scoring function that
is incremental with changes in the graph, and several scores can be used. The
Subfamilywise Multiple Testing (SMT) score (Petitjean and Webb, 2016) was
initially proposed for Chordalysis to keep the probability of making at least
one false discovery low. The well known BDeu score is not used because of well-
understood problems with its application (Suzuki, 2017). However, the SMT
score is too conservative for prediction purposes and other existing metrics such
as the Bayesian Information Criteria (BIC) seems more suitable for the task.
Similarly, the Quotient Normalised Maximum Likelihood (QNML) (Silander,
2016) has been lately proposed as a competitive score in predictive terms. As
we shown in Figure 2, the QNML metric learns models with higher number of
free parameters (right) which have higher held-out likelihood (left) for different
sizes of the training set.

After the structure is learnt, the variable order is set as per the perfect
elimination order, which exists in any chordal graph, and by decreasing TF-
IDF score. Then probabilities are estimated from the data using m-estimation,
which smooths the maximum likelihood probabilities by introducing some
pseudo-counts m. On top of that, we also use the classical Back-off scheme
introduced for Bayesian Classifiers (Friedman et al, 1997). This technique first
builds a probability tree for each Conditional Probability Table (CPT) in the
network based on a specific variable order. Nodes at the leafs of the tree cor-
respond to the entries in the CPT, while the internal nodes represent the
corresponding marginal values. Then, probabilities for each cell are computed
as weighted averages between the m-estimates at the leaves and its parent
probabilities (i.e. marginal values) in the tree. The weighting controls how
much we back off to the parent’s probability through the parameter No and
the counts for that cell. This enables smoothing the probability distribution
to deal with data scarcity when the cliques of the network are large.

2.2 Hierarchical Latent Tree Analysis (HLTA)

Hierarchical latent tree analysis (HLTA) (Liu et al, 2014; Chen et al, 2017) has
recently been developed that yield intriguing “local” topics, that only interact
with a limited set of variables. This is achieved by introducing a hierarchy of
Boolean latent variables, so that the final model is a tree with the observed
words, represented as present/absent, at the leaves. HLTA is comparable to
Boolean matrix factorisation, and has been scaled to work with thousands
of Boolean variables. The hierarchical nature of the latents leads to insightful
structures that seem inherently more interpretable than standard topic models
(e.g. Chen et al, 2017, Figure 8). The HLTA models, being restricted to a
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Fig. 2 Metrics comparison for Chordalysis models in NIPS dataset.

Boolean vector of word “presence/absence”, due to their algorithm, acts as a
lowest common denominator for us. That is, we can only use other algorithms
working with Boolean vectors.

HLTA was compared with a number of hierarchical topic models by Chen
et al (2017). This has the disadvantage that the topic models are not run
natively: they are being trained on Boolean data for which they were not de-
signed. Moreover, the nHDP algorithm used has only demonstrated a marginal
improvement in perplexity (Paisley et al, 2015) over HDP-LDA (Teh et al,
2006). Significantly more improvement is readily gained by using superior al-
gorithms for the HDP-LDA training (Buntine and Mishra, 2014). Of course,
nHDP has superior comprehensibility, with its hierarchical topics, however, we
are evaluating various performance metrics, so we will not use the hierarchical
topic modelling methods compared with by Chen et al (2017).

The algorithm to learn these trees from data operates as follows. First,
leaves are grouped using a “common latent Boolean factor” statistical test,
latent Boolean factors are added and then the grouping process repeated, with
progressive expectation-maximisation runs to re-estimate probability tables as
the trees are grown. This can be done by using all the data (BATCH) or with
less accurate mini-batch updating of parameters (STEP) on large datasets.

2.3 Bernoulli-Poisson Factor Analysis (BPFA)

Zhou (2015) introduced the Bernoulli-Poisson link technique to extend Poisson
factorisation methods to Boolean data. With this we can take the Poisson
factorisation model of Zhou et al (2012), which is a flexible model, and add
the Bernoulli-Poisson link on top to obtain a representative factor analysis
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method for Boolean vector data. We refer to this as Bernoulli-Poisson factor
analysis (BPFA).

The BPFA model does matrix factorisation to create matrices Φ (the load-
ing matrix) and Θ (the factor matrix) with the following probability forms:

φk ∼ DirichletV (β1) θd,k ∼ Gamma
(
gk,

qk
1−qk

)
xd,v ∼ Poisson

(∑K
k=1 θd,kφk,v

)
yd,v = 1xd,v≥1 ,

(1)

where K is the number of topics, d indexes documents, V is the size of the
vocabulary, and β, g and q (where 0 < qk < 1) are hyper-parameters with
their own priors. Note Φ is made up of rows φk which normalise. This pa-
rameterisation means that BPFA is comparable to HDP-LDA in terms of
hyper-parameters, but with a fixed dimension for topics. More details can be
found in Zhou et al (2012); Hu et al (2016). The observed data is the Boolean
matrix Y which has a corresponding latent count matrix X.

The algorithm to learn the model parameters from data goes as follows. Af-
ter random initialisation, a Gibbs sampler iterates over parameters and latent
counts and topic values. The sampler is built on the conditional exponential
family structure of the model, and in some cases using data augmentation to
create fast simple sampling. Hyper-parameters are similarly sampled.

2.4 Other Models

In a very different manner to HLTA, but perhaps with a similar high-level
goal, focused topic models allow focusing on limited vocabularies per topic, as
implemented in latent IBP compound Dirichlet allocation (Archambeau et al,
2015). This means the words distribution for a topic is now limited to a small
subset of words, perhaps 5-10% of the full vocabulary. Current implementa-
tions, however, neither deal with Boolean data nor matrix factorisation and
thus we could not perform the comparisons.

As mentioned in the introduction, there are also rich and high-performing
classes of deep neural network models. Most, however, use richer document
structures and build more complex document architectures, not simple graph-
ical models, so again we have not included them here.

3 Experimental Methodology

We first discuss general evaluation methods. Because of the variety of different
algorithms, this turns out to be a challenging, so we discuss the literature and
report our conclusions on how evaluations should be done. We then present
the software implementations, datasets and parameter setting for the experi-
mentation.
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3.1 Evaluation Methods

Perplexity for topic models is a measure of the predictive log-likelihood of
a held-out document scaled to a “per-word” measure. Various methods ex-
ist for estimating it where the computation is very different (Wallach et al,
2009). The only reliable technique giving an unbiased estimate of log-likelihood
is the left-to-right algorithm of Wallach et al (2009). Given a sequence of
words w1, w2, ...wL, it estimates p(wl|w1, w2, ..., wl−1) in turn using MCMC for
l = 1, ..., L. It is computationally intense, however, and the preferred method
instead is document completion, which estimates the topic proportions θ on
w1, w2, ...wL/2, and then computes p(wL/2+1, ..., wl−1|θ) exactly. This does not
give an unbiased estimate of p(wL/2+1, ..., wl−1) because it is informed by an
estimate for θ, but it is comparatively unbiased for different topic modelling
algorithms/methods/models that all similarly require an estimate of θ.

In our case, a document is represented as a Boolean vector, and words are
not supplied in a sequence. For matrix factorisation, things are more subtle,
but a similar technique to document completion has been proposed by Zhou
et al (2012). This splits the 1-valued entries of the document vector y into two
parts. The first part is zeroed, and from this the document factor vector θ is
estimated. Then the second part is zeroed and the document vector can have
its probability computing exactly using θ. As before this is biased, though
comparatively unbiased. So it is suitable for their comparison of Poisson fac-
torisation models, but is unsuitable for our comparison with Chordalysis or
HLTA.

So, could a left-to-right algorithm be developed for estimating log proba-
bilities of Poisson factorisation models? While in principle the same sequential
logic applies, gradually adding words (which may be 0 or 1) to a partially
filled document vector, there is a catch that makes it computationally much
harder. Computation of the document likelihoods is non-trivial in the case of
a partial document vector. The normalising constant for a Poisson is e−λ for
rate λ. For a full data vector, the product of these over all features is, from
Equation (1)(

V∏
v=1

e−
∑K

k=1
θd,kφk,v

)
= e−

∑V

v=1

∑K

k=1
θd,kφk,v = e−

∑K

k=1
θd,k .

Thus, with a full data vector, exponential terms in φk,v disappear so the like-
lihood is Dirichlet on φk. Not so for a partial data vector!

Thus, for now, we claim that efficient unbiased estimation of the probability
of a document vector for Poisson matrix factorisation is challenging. We avoid
it in the experiments.

Another common evaluation method is to do link prediction (Zhou, 2015).
The idea is to hold out some of the variables (which may be positive or neg-
ative), and then evaluate how well their occurrence is predicted from the re-
mainder of the record. For this to be done correctly, the missing link/variable
needs to be made temporarily “missing”, and the various models ran to predict
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its probability of occurrence. This computation is not always done correctly:
some researchers simple zero the variable rather than making it missing. We
refer to this task as omni-directional learning, as the task is to do predictive
modelling, but on a random selection of variables, rather than on a single
target variable as is done for classification.

A popular task is to use the topics or factors derived from the matrix fac-
torisation or topic model as features for a classification algorithm, for instance,
a support vector machine (Buntine and Jakulin, 2004). In our context, this is
not realistic for Chordalysis, there is no vector of factors, so we have not done
it. The omni-directional learning task is a more direct replacement for the use
of the models in classification.

Another earlier task was to use the models for information retrieval, for in-
stance for topic models (Wei and Croft, 2006). The results here have not stood
the test of time against the onslaught of the BM25 paradigm (Robertson and
Zaragoza, 2009). The conceptual task of retrieving information with suitable
“aboutness” or relevance to query words is sufficiently ill-defined that we be-
lieve better understanding is needed before suitable use of general document
models can be used for information retrieval.

A final task we consider is anomaly detection (Chandola et al, 2009), an
important task in security and engineering domains for instance. This is a
broad area but we consider the problem of point anomaly detection (whether
a single data item or document as an anomaly). There are a broad number
of techniques in use, and we use ranking by log probability (lower is more
likely to be an anomaly) as a straw-man algorithm to compare with. Note
text anomaly detection is more challenging because of the huge number of
variables. Clustering is sometimes used for collective anomaly detection with
text, a different task to point anomaly detection.

Thus we use three different evaluation protocols, briefly described here,
but more detail of implementation is given later.

Log-likelihood: Simple measure of predictive probability for documents held
out from the training set. Not done for BPFA.

Omni-directional prediction: for each document, a variable (word) is drawn
at random from a candidate set and then a prediction is made for it (is it
in or out of the document). This can be reported in terms of AUC or root
mean square error (measuring quality of the probability predictions).

Anomaly detection: an infrequent subclass of documents are held out from
training and then added to a test set and fed to the model. The subclass
are presumed the anomalies in the test set, and are presumed to be low
probability documents. Log probability gives a base ranking to predict if it
is an anomaly and other derived measures can be used. Which ever measure
is used, it can be evaluated with AUC.
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3.2 Implementation

We modified the Java code of Chordalysis1 to include QNML and BIC. We
used the existing Java code of HLTA2. The Matlab code for the Bernoulli
matrix factorisation was originally reported in Hu et al (2016) and some code
was added to estimate hyper-parameters and some computational speed-ups
were done. The three evaluations were done in Java and Matlab respectively
and care was taken to ensure standardisation across implementations.

Note that most of the evaluations for HLTA and Chordalysis are simple to
implement because of their convenient structure as simple Bayesian networks.
Suppose that a document is represented by a Boolean vector y, and if entry v,
yv, is converted to a missing value, this is denoted as y−v. Then computation
of the measures works as follows, given a specific model represented by M .

Log-likelihood: Compute logPr(y|M). Not done for BPFA.
Omni-directional prediction: We have a candidate set of words S. For each

v ∈ S compute Pr(yv|y−v,M), and note the correct value yv is given in the
data. That gives a set of |S| scores calibrated as probabilities. So use these
and by changing the threshold q (0 < q < 1), compute AUC. Alternatively,
compute root mean square error by averaging (yv−Pr(yv|y−v,M))2 across
all words S and all test documents, and then reporting the square root.

Anomaly detection: We tested various scores based on logPr(y|M) or Pr(yv|
y−v,M) for v ∈ S. These are reported in Section 6. For BFFA, scores do
not need to be unbiased, so logPr(y|M) can be recorded for an aposterior
sample of θ (the document factors).

The harder computations here are for BPFA. We argued previously that esti-
mating logPr(y|M) in an unbiased manner efficiently is an open question. To
estimate predictive probabilities such as Pr(yv|y−v,M), however, is feasible.
Note it is well known how to construct a Gibbs sampler for a given document,
for θd and xd, and also the case when one of the words yd,v are missing. The
following formulas are then recorded during the respective MCMC runs and
an estimate made:

λd,v =

K∑
k=1

φv,kθd,k

Pr(yv = 1|y−v,M) =
(
1− e−λd,v

)
Omni-directional prediction and anomaly detection for BPFA can be evaluated
with these.

3.3 Datasets

We selected three regular and three short text corpora for the experimenta-
tion. Collections were preprocessed with the text mining tool assembled in

1 https://github.com/fpetitjean/Chordalysis
2 https://github.com/kmpoon/hlta



10 Capdevila et al.

Scala included in the HLTA software3, which is suited to build Boolean vec-
tor data. For each collection, we tokenised text strings by space, lower-cased
tokens, normalised them according to the Normalization Form KC (NFKC),
removed stopwords based on the Lewis list and filtered out words with less
than 3 characters. From the resulting vocabularies, we selected the top-500
and top-2000 words with highest TF-IDF score (the raw counts of a term nor-
malised by the negative logarithm of the fraction of documents that contain
that term) to build two vocabularies for each collection. All datasets were
tokenised and binarised based on these vocabularies and documents with-
out any word were removed. The final Boolean datasets are available from
https://doi.org/BLINDED-URL and have the following features:

NIPS: consists of 1,740 conference papers published at NIPS between 1988
and 19994.

20NG: 20 Newsgroups, consists of 18,828 news articles and each article is in
one of 20 categories5. An article has on average 65 different words.

NYT: New York Times Annotated Corpus supplied by the Linguistic Data
Consortium6. It contains 1,855,658 news articles. An article has on average
196 different words.

WS: Web Snippet, used by Li et al (2016), contains 12,327 web search snippets
and each snippet belongs to one of 8 categories. Documents are typically
15 words long before reducing the vocabulary.

TMN: Tag My News, consists of 32,573 English RSS news snippets from Tag
My News, used by Nguyen et al (2015). Belonging to one of 7 categories,
each snippet contains a title and a short description, average length 18
words.

Twitter: is extracted in 2011 and 2012 microblog tracks at Text REtrieval
Conference (TREC) 3, preprocessed by Yin and Wang (2014). It has 11,109
tweets in total and a tweet contains 21 words on average.

In the likelihood and omni-directional prediction experiments, we looked
at the performance of the different graphical models as function of the amount
of training data. For each dataset, we randomly generated four training splits
of different size and evaluated the trained models in a held-out set, which we
kept the same for all training splits.

In the omni-directional prediction task, we held-out some words from the
test set. In particular, we have randomly selected S = 10 words per test
document for all datasets except for NIPS, in which we chose S = 50 given
that the test set was smaller and there was too much variance in the results.

In the anomaly detection task, we used the 20Newsgroups and the WS
dataset given that both are labeled and they are a good representatives of
long and short text. For this task, datasets were split in the classical 80%
training, 20% testing framework and the anomalous class was held-out from

3 https://github.com/kmpoon/hlta
4 http://www.cs.nyu.edu/~roweis/data.html
5 http://qwone.com/~jason/20Newsgroups
6 http://catalog.ldc.upenn.edu/LDC2008T19
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Table 1 Model hyper-parameters and algorithm parameters.

Chord - BIC Chord - QNML Chord - SMT
Kmax = 20 Kmax = 20 p = 0.05
No = 5 No = 5 No = 5

mest = 0.5 mest = 0.5 mest = 0.5
perr = 0.05

BPFA HLTA - Batch HLTA - Step
β ∼ Gamma(1, 1) max-EM-steps: 50 max-EM-steps: 50

qk ∼ Beta(1/K, (1 − 1/K)) num-EM-starts: 5 num-EM-starts: 5
gk ∼ Gamma(1, 1) EM-threshold: 0.01 EM-threshold: 0.01

K = 200 UD-test-threshold: 3 UD-test-threshold: 3
train-burnin: 500 max-island: 10 max-island: 10
train-collect: 500 max-top: 15 max-top: 15
test-burnin: 100 Global-batch-size: 1,000
test-collect: 100 Global-max-epochs: 10

Global-max-EM-steps: 128
Structural-batch-size: 1,000/10,000

the training set. To do a fair comparison, we report results by holding out each
category in the collection.

In all tasks, each experiment was performed 5 times and different training-
test splits were randomly generated at each repetition.

3.4 Model parameters

Next, we report all model parameters set in this experimentation. A full sum-
mary can be found in Table 1.

For the Chordalysis models based on BIC and QNML, we set a safety pa-
rameter limiting the tree-width of the network Kmax equal to 20 to avoid mod-
els with big cliques. Nonetheless, this value was never reached. For Chordal-
ysis with the SMT score, we specified the maximum family-wise error rate
perr = 0.05. For all three Chordalysis models, we use the simple Back-Off esti-
mates introduced for Bayesian Classifiers (Friedman et al, 1997) that computes
each cell in the conditional probability table as a weighted average between
the cell itself and its parents, in the probability tree. N0 controls how much
we back-off to the parent estimate, being 0, no back-off and ∞ complete back
off to the parent value. As in Friedman et al (1997), we use N0 = 5. More-
over, we also smooth each cell in the CPT with m-estimates with parameter
mest = 0.5.

For HLTA, we used the default values reported by Chen et al (2017), except
for the structural-batch-size parameter, which we set to 1,000 in the small
datasets (20Newsgroups, WS, Twitter) and to 10,000 in the large ones (TMN,
NYT).

For BPFA, all hyper-parameters were sampled using benign priors using
standard augmented Gibbs samplers. Details of the priors are in the table.
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4 Likelihood Experiments

In the document likelihood experiments, we consider Chordalysis and HLTA
models. After training each model in the corresponding data split, we report
the per-document log-likelihood on the test set. Computing the log-likelihood
on the set of held-out documents consists in a inference task on the discrete
graphical model.

Results in Figure 3 show that graphical models learned out of Chordalysis
give higher log-likelihood to held-out documents than HLTA, specially when
the training data is larger. Full plots in all cases are reported in the Appendix.
This can be explained by Figure 4 where we see that the number of parameters
in Chordalysis grows with the dataset size. Also, we see that the stepwise
version of HLTA, HLTA-STEP, harms performance over the batch version
considerably in some cases.
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Fig. 3 Per-document log-likelihood as function of training data.

5 Omni-directional Prediction Experiments

For each document in the test set we randomly hold out S words (S = 50 in
NIPS, S = 10 in the rest) and predict their presence or absence given all other
words in the document and the graphical model.
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Fig. 5 AUC-PR scores in the task of Omni-directional prediction.

Predictions are compared to the true word labels (present or absent) and
assessed in terms of Area Under the Precision Recall Curve (AUC-PR). The
choice of AUC-PR instead of AUC-ROC is motivated by the skewness in the
dataset, i.e the “anomaly” class is unlikely (Davis and Goadrich, 2006). We
also compared them in terms of Root Mean Square Error (RMSE) and see
that both scores brings us similar conclusions.

Figure 5 plots the AUC-PR score for 5 different datasets with vocabulary
sizes of 500 and 2,000 words. In this task, we compare all 6 models in scope
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Fig. 6 AUC-PR boxplot for the anomaly class Health in WS dataset for different scores.

and evaluate their prediction capabilities. Full plots in all cases are reported
in the Appendix.

We observe that Chordalysis models outperform in four out of five datasets.
Of the Chordalysis variants, QNML is marginally superior. The performance
of BPFA is quite poor, for short text particularly.

6 Anomaly Detection Experiments

A classical statistical approach to assess how anomalous a test document is
w.r.t. a set of “nominal” documents is to compute its likelihood under a null
model which has been learned out of the “nominal” set (Chandola et al, 2009).
Next, we aim to compare the different graphical models on the task of anomaly
detection.

However, we first show that the straightforward use of log-likelihood as a
score for anomaly detection is not enough in the context of text data, where
documents have different lengths and some features (i.e. words) might be more
discriminative than others. This motivates the development of a tailored score
for this task, which despite being based on likelihood it also normalises by the
document length and its weights each word by its IDF.

In Figure 6, we show the detection performance for three different scores
in uncovering the anomalous class in the WS dataset. This is for a repre-
sentative class, and note corresponding comparative results were obtained in
all cases. That is, the relative performance of the three scores was consis-
tent across anomalous classes. The first score corresponds to the naive log-
likelihood, which can be computed for all models except BPFA. The second
score is built from the probabilities average over all the words that are present
in the document. The last score weights these probabilities with the Inverse
Document Frequency (IDF). From the first to the second score, we correct
the fact that longer documents will always be more anomalous, whereas from
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Fig. 7 AUC-PR scores in 20Newsgroup and WS for different anomalous classes. See text
for explanation of colours.

the second to third, we adjust the score to make it less sensitive to common
words, which less discriminative in discovering the anomaly. Intuitions from
information retrieval (Robertson and Zaragoza, 2009) clearly work for anomaly
detection.

In Figure 7, we show the detection performance for 4 of the categories that
we kept as anomalous in WS and 20Newsgroup. The colouring of box-plots
follows the legend of Figure 6, and the grey result corresponds to a simple
baseline just using log-probability. Full plots for more cases are reported in
the Appendix, but the results in the figure are representative.

We note that we also tried OC-SVM (Chang and Lin, 2011), using the
distance to the hyperplane as anomaly score, but its performance was not
competitive given that it was not proposed for high-dimensional data.

In summary, the three Chordalysis variants are similar and more consis-
tent than the others. HLTA and BPFA perform better sometimes, but more
generally are marginally worse. The baseline works extremely well in a 5/20
cases on 20Newsgroups in politics and religion, for reasons we have not yet
understood.

7 Running Times

Finally, we measured the running times for the 6 models under study in the two
datasets 20Newsgroup and WS. Although these times have been measured in
similar conditions, the implementations do not only differ from the algorithmic
point of view, but also from the programming language used. Therefore, the
aim of these results is more to give some insights on the running times of each
algorithm rather than doing a proper comparison.



16 Capdevila et al.

2000 4000 6000 8000 10000 12000 14000

1
0

2
0

5
0

1
0

0
5

0
0

2
0

0
0

Training Documents

R
u

n
n

in
g

 t
im

e
 (

s
)

500 words

2000 4000 6000 8000 10000 12000 14000

2
0

0
5

0
0

1
0

0
0

2
0

0
0

5
0

0
0

1
0

0
0

0

Training Documents

R
u

n
n

in
g

 t
im

e
 (

s
)

2000 words

Chord − BIC Chord − QNML Chord − SMT HLTA − Batch HLTA − Step BPFA

Fig. 8 Running time in the 20newgroups dataset.

As we can see in Figure 8, BPFA and HLTA-Batch are the most time con-
suming algorithms, specially for large data sets. This hampered the execution
of these algorithms in large datasets, such as NYT.

We also note that the running time for Chordalysis models ramps up when
increasing the vocabulary size from 500 to 2000 words. This hinders the use of
Chordalysis models for vocabularies larger than thousands of words. Although
the differences between the 3 Chordalysis scores are small, we highlight the
fact that QNML takes more time than BIC and SMT. This is due to the search
procedure for QNML takes more steps than that of BIC and SMT given that
the QNML score enables the finding of richer structures.

The HLTA Stepwise algorithm keeps the running time constant by sub-
sampling the vocabulary to learn the structure (structural-batch-size in Ta-
ble 1) and sub-sampling the observations to learn the parameters (Global-
batch-size in Table 1). However, the performance penalty was often severe.

8 Conclusion

We sought to compare three very different styles of unsupervised text mod-
els that are based on the bag-of-words representation: Chordalysis, which
learns chordal graphs, Hierarchical latent tree analysis (HLTA), which learns
trees with observed variables at the leaves, and Bernoulli-Poisson factor anal-
ysis (BPFA), which is a matrix factorisation method. We restricted ourselves
to Boolean models, and for evaluation used document log-likelihood, omni-
directional prediction, and anomaly detection. These tasks were chosen as
being best suited from a range of others, although for BPFA unbiased docu-
ment log-likelihoods could not feasibly be computed. We did not evaluate the
interpretability or explainability of the different models, but we note that all
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three have excellent though different properties in some respects, with BPFA
being perhaps the least explainable generally.

For Chordalysis, the new QNML scoring function was superior, though
BIC was close. For document log-likelihood Chordalysis was generally superior
but we expect that is because it supports much lower bias models. For omni-
directional prediction, Chordalysis was generally superior but HLTA was good
in some cases. BPFA was quite poor at this task. For anomaly detection, BPFA
was generally best, but Chordalysis was close, and HLTA was poor.

Matrix factorisation which is BPFA, despite its reputation, did not perform
well in the prediction tasks, probably because its models have no local char-
acteristics like Chordalysis and HLTA. HLTA was very effective, but clearly
with its limited number of parameters could not compete with Chordalysis as
the dataset size grew. Chordalysis, however, did not scale well with a larger
vocabulary.

Future work is needed in a number of areas: extending HLTA and Chordal-
ysis models to richer structures and count data, doing unbiased document
probability estimates for matrix factorisation, and better exploring focused
topic models and deep neural networks, which were not evaluated here.
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Twitter dataset
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B Omni-directional Prediction
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WS dataset with 500 words
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Twitter dataset with 500 words
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TMN dataset with 500 words
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TMN dataset with 2000 words
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Fig. 9 Anomaly Detection in W’S dataset
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Fig. 10 Anomaly Detection in 20Newsgroups dataset
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D Running Times
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Fig. 11 Running time in WS dataset
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Fig. 12 Running time in 20Newgroups dataset
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