Scalable learning of graphica

Introduction - Motivation

Graphical models 101

Graph theory

Evaluation - Scoring

Break

Efficient search

The nitty-gritty

Use cases

Wrapping up!

What & & probabislic ;
prtstiy |

Gty rcatiey ot backirn e

Lalaw T
“lale w
il y
o Compuacty prnmring ptndly o |
Classes of graphical models

o Vil B! -
1. scalable scoring =

2 etlcient search

2. scalable belie propegation

= all the et wewil show here

[ What are graghical models usedd far?

Whai vee wil and will not couesr

+ Wil Ui, 6 iyl e
Tt meshies .

A

A simple cxample of soucoere leaming
b aganh o M L AT

FTET TR

Most soores are soalable
Entrogy (1]
Lok 1. P vt
e way

F—

e

models

el algorithens

——

Seoring in greedy search

Couning sty

S - lor aemgie e KL riri e

is futorial in a nustshell
1 Db v v ey il
) ke I 450
- et rep

g kv
gue ' it

2 Elertc i s
btk i

4 Theo o 5l 4 sch e b o’

Cligue graph and greedy search
s 88

JLEramm——
- 3D jpanrn ! pading

| Open problems
1. ikt it

Open problems (2)
I e 1 e o v
O oL ST T VU [ S ————

1. Effrsent sxssn gl msspesl sty

4. P vt b by eerieg
o e BT O e g

B Lmamirg pat o oo

Search and statistical paradigm

Hew fasl zan e gua?

How rhn e s

R —

Wi o el s o v o

Scalatie lesming i gragtvesl o
Frargus bt and e s




Scalable learning of graphica

Introduction - Motivation

Graphical models 101

Graph theory

Evaluation - Scoring

Break

Efficient search

The nitty-gritty

Use cases

Wrapping up!

What & & probabislic ;
prtstiy |

Gty rcatiey ot backirn e

Lalaw T
“lale w
il y
o Compuacty prnmring ptndly o |
Classes of graphical models

o Vil B! -
1. scalable scoring =

2 etlcient search

2. scalable belie propegation

= all the et wewil show here

[ What are graghical models usedd far?

Whai vee wil and will not couesr

+ Wil Ui, 6 iyl e
Tt meshies .

A

A simple cxample of soucoere leaming
b aganh o M L AT

FTET TR

Most soores are soalable
Entrogy (1]
Lok 1. P vt
e way

F—

e

models

el algorithens

——

Seoring in greedy search

Couning sty

S - lor aemgie e KL riri e

is futorial in a nustshell
1 Db v v ey il
) ke I 450
- et rep

g kv
gue ' it

2 Elertc i s
btk i

4 Theo o 5l 4 sch e b o’

Cligue graph and greedy search
s 88

JLEramm——
- 3D jpanrn ! pading

| Open problems
1. ikt it

Open problems (2)
I e 1 e o v
O oL ST T VU [ S ————

1. Effrsent sxssn gl msspesl sty

4. P vt b by eerieg
o e BT O e g

B Lmamirg pat o oo

Search and statistical paradigm

Hew fasl zan e gua?

How rhn e s

R —

Wi o el s o v o

Scalatie lesming i gragtvesl o
Frargus bt and e s




What is a probabilistic graphical model?

Probability theory Graph Theory

continuous convergence algorithm coloring

discrete distribution editevent computer drawing edges
function mathematical + graph mathematics

easure . number networks prOblem
prObabIIIty random sample represent structure sy subgraphs

space theory theory used

variables vertices

v v

Quantifying uncertainty ~ Not a black box +
e Efficient algorithms
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What are graphical models useful for?

Studymg correlations _&
& mdependenmes

Classification

KDE, AODE, AnDE, ...

+ the thousands of applications of
these methods...

Slmultaneously predicting
multiple variables

Hidden Markov Models (HMM), Of
Maximum Entropy Markov Models (MEMM),
Conditional Random Fields [CRF),

Dense Random Fields (DRF),

... the next sequence
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e - the class of sets of
pixels
ey Mot N

() Buntine and Mishra @KDD'14

Causal
Discovery &
Inference




Studying correlations
& Independencies

HighBloodPressure

EverMarried )

EverPressureChest



Classification

Naive Bayes C

OMass O Glucose

Pre gna:nt \y

Insulin

KDB, AODE, AnDE, ...



Simultaneously predicting
multiple variables

Hidden Markov Models (HMM), of...
Maximum Entropy Markov Models (MEMM),
Conditional Random Fields (CRF),

Dense Random Fields (DRF),

Y1 Y Ys Y 1 Y, ... the next sequence
of words
... the class of sets of
pixels
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Discrete case e e
- Neat problem definitions *l

- Already very challenging /;,ﬁ,,.<

+ Handling numerical variables
with discretisation
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§alable methods

1000+ v rinbles
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if #variables = 30 then if #samples < 500 then
use [1] use model averaging [2,3)
end if # model selection not really relevant
end if

[1] T.silander, A simple approach hee finding the globally optimal Bayesian netwark stuctune
LIAT 2006 - hifpaiacd Fi

[2] J. Hoeating, Bayesian Model Avaraging: A Tutonal, Statistical Science 1999
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Modelling the joint distribution |

Joint discrete distribution
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Modelling conditional distribution
- Open problem with intense research effort
-« Possible to use the joint to approximate a
structure that models the conditional (eg TAN [1])
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[4] 1. Eediman, Bayesian Network Classifers, Magline Leaming, 1997, lusulia
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Structure and parameters

Data
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Scalable methods
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If #variables < 30 then if #samples < 500 then

use [1] use model averaging [2,3]
end if // model selection not really relevant
end if

[1] T.Silander, A simple approach for finding the globally optimal Bayesian network structure
UAI 2006 - http.//arxiv.org/abs/1206.6875

[2] J. Hoeating, Bayesian Model Averaging: A Tutorial, Statistical Science 1999

[3] B.M. Broom, Model averaging strategies for structure learning. BMC Bioinformatics 2012




Modelling the joint distribution

Joint discrete distribution
—> P(X1 :ZCl,...,Xn :Zﬁn)

Modelling conditional distribution
- Open problem with intense research effort
- Possible to use the joint to approximate a
structure that models the conditional (eg TAN [1])
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T DPF \ \

Pregnant O\“
Age _

[1] N. Friedman, Bayesian Network Classifiers, Machine Learning, 1997. Insulin
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Study of the elderly

- 25 variables
- 15,000 patients

Belief propagation

New patient, Lan, is visiting her !

new GP; the GP wanls to check &
her risk of getting a few diseases: Ly,
stroke, diabetes, heart attack.

evidence | stroke |diabetes|heart attack
female under 70 5% 15% 10%
+ maried 596 15% %
+ smoking 7#h 17% 12%
+BP=17/10 a% 174 13%
+no el T walk 5% 16%: 1280
+ QUi sroking? 495 1485 o
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Study of the elderly

- 25 variables
- 15,000 patients

2 'S

Belief propagation

New patient, Lan, is visiting her !
new GP, the GP wanls to check -
her risk of getting a few diseases: L+,
stroke, diabetes, heart attack.

evidence  |stroke|diabetes|heart attack
female under 70 5% 15% 10%
+ marned 5% 15% 8%
+ smaokirg 7% 175 12%
+ BP=17/10 B9 I7% 13%
+no help fo walk 5% 16% 12%
+ quif srmoking? 4% 14% 9%




Female

A B C D G H J K M T u vV w Y
Gender Age EverMai Married Working Retired Correcti HelpToV WalkMil HeartAt Stroke Cancer Diabete Insulin HighBlo MedForl PainWal EverPre ShortBr Weight Height 2ndBlod 2ndBloc Smokini Eversmo
Male B85over Yes Separate No es 7 Help No No No No No No Yes No No 7 No V(133-17 v(60.5-65 7 ? No Yes
Female B85over Yes Divorced No No Incomect NoHelp Yes No No No No No No No No ? No \'(-inf-132\'(-inf-60. \'(118.5-1\'(37.5-7% No No
Male BSover | Yes NowMarr ? ? Incorrect NoHelp No No No Yes No No No No Yes ? No \'(-inf-13: \'(60.5-65 1'(118.5-1\'(37.5-7% No Yes
Male 80-84 Yes NowMarr No Yes Incorrect NoHelp Yes No No No No No No No No ? No \(133-17 v(69.5-im \'(167-21 \'(75-112 No Yes
Female B80-84 Yes Divorced No No Incomrect Help No No No No No No No No No ? No ? ? ? ? No No
Female 85over No ? No Yes Comrect NoHelp Yes No No No No No No No No ? No \'(-inf-13: \'(-inf-60. \'(118.5-1\'(75-112 No No
Female 80-84 No ? No No Incomrect NoHelp No No No No No No Yes Yes No ? No \'(133-17 \'(60.5-65 \'(118.5-1\'(37.5-7° No No
Male B80-84 Yes NowMarr No Yes Incomect NoHelp No No No No No No Yes Yes No ? No V(133-17 \'(65-69.5 \'(167-21 \'(75-112 No Yes
Female B80-84 Yes Divorced No Yes Incomect NoHelp No Yes No No No No No No No No No \'(133-17 \'(60.5-65 \'(118.5-1\'(75-112 No No
Male B80-84 No ? No Yes Incomect NoHelp Yes No No No No No ‘fes No No 7 No \(172-21 \'(65-69.5V'(167-21 \'(75-112 No No
Female 75-79 Yes Divorced No No Incomect NoHelp No No No Yes No No No No Yes ? No \'(133-17 \'(60.5-65 ? ? Yes Unknown
Male 80-84 Yes NowMarr Yes Yes Incomrect NoHelp  Yes No No No No No No No No ? No V(133-17 \'(60.5-65 \'(118.5-1\'(75-112 Yes Unknown
Female 80-84 Yes Divorced No Yes Incorrect Help No Yes No No No No No No No ? No \(172-21 \'(60.5-65 \'(118.5-1\'(37.5-7¢ No No
Male 75-79 Yes NowMarr No Yes Incomect NoHelp Yes Yes No No No No No No No ? No \(133-17 \'(69.5-in ? ? No No
Female 80-84 Yes Divorced No Yes Incorrect NoHelp Yes No No No No No No No Yes 7 No V(-inf-132 7 V(118.5-1\(75-112 Yes Unknown
Male 75-79 Yes Divorced No Yes Incomect NoHelp Yes No No No No Mo Yes Yes No 7 No V(172-21 \'(65-69.5\'(167-21 \'(75-112 No Yes
Male 75-79  Yes NowMarr ‘Yes No Incomrect NoHelp Yes Yes Suspect No Suspect No No No No ? No \'(172-21 \'(69.5-in \'(118.5-1\'(37.5-7¢ No No
Male B80-84 Yes NowMarr No Yes Incomrect NoHelp Yes No Mo No No No Yes Yes No ? No \(133-17 V(65-69.51'(118.5-1\'(75-112 No es
Female 75-79 Yes NowMarr No ‘Yes Comect NoHelp Yes No No No No No Yes No No ? No \'(133-17 \'(60.5-6 '(118.5-1\'(75-112 No No
Female 75-79 Yes Divorced No No Incomect NoHelp  Yes No No No No No No No No ? No \'(-inf-13: V'(60.5-65 \'(-inf-11¢ \'(37.5-7¢ No No
Female 80-84 Yes NowMarr No No Incorrect NoHelp Yes No No No No No No No No ? No V'(133-17 V(60.5-6° \'(167-21 \'(37.5-7F No No
Female 75-79 Yes NowMarr No Yes Incorrect NoHelp Yes No No No No No Yes Yes No ? No \'(-inf-132\'(60.5-65 \'(167-21 \'(37.5-7% No No
Male 75-79  Yes Divorced No Yes Incomrect Help No No No No No No Yes Yes No Yes No \'(133-17 V'(89.5-im V'(-inf-11¢ \'(37.5-75 No Yes
Male B80-84 Yes Divorced Yes Yes Incomect NoHelp  Yes Suspect Mo No No No No No No 7 No V(133-17 \'(60.5-65 V'(167-21 \'(75-112 Yes Unknown
Female 70-74 Yes NowMarr No Yes Incomect NoHelp Yes Yes No Yes No Mo No No No 7 No \'(-inf-13: \'(-inf-60. \'(118.5-1\'(37.5-7% No Yes
Male 70-74 Yes Divorced No Yes Incorect NoHelp Yes No No Yes No Mo No No No 7 No V(211-inf \'(65-69.5 \'(118.5-1 \'(75-112 Yes Unknown
Female 80-84 ? ? ? ? Correct  ? No No No No No No No No No ? No ? ? ? ? ? Unknown
Female 70-74 Yes Separate No No Incomect NoHelp Yes No No No No No Yes Yes No ? No \'(-inf-13: \'(-inf-60. \'(118.5-1\'(37.5-7< No Yes
Male 70-74  Yes NowMarr No Yes Incomrect NoHelp Yes No No No Yes No No No No ? No V(133-17 V(65-69.51'(118.5-1\'(37.5-75 No No
Male 80-84 No ? No Yes Incomrect NoHelp  Yes No Yes No No No No No No ? No \'(133-17 V(60.5-6° \'(118.5-1\'(75-112 No Yes
Female 70-74  Yes Divorced Yes Yes Incorect NoHelp Yes No No No Yes No Yes Yes No ? No \'(172-21 7 V(118.5-1\(75-112 No No
Female 70-74 Yes NowMarr No Yes Incomect NoHelp Yes No No No No No Yes No No ? No \'(133-17 \'(80.5-65 \'(118.5-1V'(75-112 Yes Unknown
Male 70-74 | Yes NowMarr No Yes Comrect NoHelp Yes No No No No No Yes No No ? No \'(172-21 \'(65-69.5 \'(118.5-1\'(37.5-7¢ No Yes

70-74  Yes NowMarmr No fes Incomect NoHelp Yes No No Yes No No No No No 7 No V(133-17 V(60.5-65 \'(118.5-1 \'(75-112 No No
Male under70 Yes NowMarr Yes Yes Incomrect NoHelp  Yes No No No No No No No No ? No \'(-inf-13: \'(69.5-in \'(-inf-11f \'(37.5-7% No No
Female 70-74 Yes Divorced No No Incomrect NoHelp No No No No No No No No Yes No No ? \'(60.5-65 V'(118.5-1\'(37.5-7¢ No No
Male 70-74  Yes NowMarr No Yes Incomrect NoHelp Yes No No No No No No No No No No \'(211-inf \'(65-69.5 1'(118.5-1\'(37.5-7¢ No Yes
Female 80-84 Yes Divorced No Yes Incorect NoHelp Yes Yes No No No No No No No ? No \'(-inf-13: \'(60.5-65 \'(118.5-1 \'(37.5-7¢ Yes Unknown
Female 75-79 Yes Divorced No No Incomrect Help Yes No No No No No Yes Yes Yes No No V(133-17 \'(60.5-65 \'(118.5-1\'(75-112 No No
Male 70-74  Yes NowMarr Yes No Incorect NoHelp Yes No No No No No No No No ? No \'(172-21 \'(65-69.51'(118.5-1\'(75-112 No No
Female 80-84 Yes Divorced No No Incorrect NoHelp No No Yes No No No No No No es Yes V(133-17 \'(65-69.2 \'(118.5-1\'(37.5-7% No No
Female 75-79 Yes NowMamr No ‘Yes Incomect NoHelp Yes No No No No No No No No No No \'(133-17 \'(-inf-60. \'(167-21 \'(75-112 No No
Male under7o Yes Divorced No Yes Incorrect NoHelp Yes No No Yes No No ‘Yes Yes No No No \(133-17 \'(60.5-65 1'(118.5-1\'(75-112 No Yes
Female 75-79 No ? No No Incomect NoHelp  Yes No No No No No No No No ? No ? \'(60.5-65 \'(167-21 \'(75-112 No No
Female 75-79 Yes NowMarr No Yes Correct Helo No Yes No No No No Yes Yes No Yes Yes \'(-inf-132 V(60.5-65 \'(118.5-1\'(75-112 No No
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Belief propagation
New patient, Lan, Is visiting her !

new GP; the GP wants to check ~ #
her risk of getting a few diseases: ...,

stroke, diabetes, heart attack.

stroke |diabetes |heart attack

10%
9%
12%
13%
12%
9%

evidence

female under 70
+ married

+ smoking
+ BP=17/10

+ no help to walk
+ quit smoking?




Study of the elderly

- 25 variables
- 15,000 patients

Belief propagation

New patient, Lan, is visiting her !

new GP; the GP wanls to check &
her risk of getting a few diseases: Ly,
stroke, diabetes, heart attack.

evidence | stroke |diabetes|heart attack
female under 70 5% 15% 10%
+ maried 596 15% %
+ smoking 7#h 17% 12%
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Classes of graphical models

Bayesian Network

= H P (Xz.=|xprtren£s(1;})

v eV

X-Ray Dyspnea

Possible causal interpretation

Factor graphs

Markov networks
or Markov Random Fields

—

Special case of log-linear models that have the
property of being graphical




Bayesian Network

veV

X-Ray Dyspnea

Possible causal interpretation




Markov networks

Special case of log-linear models that have the
property of being graphical



A simple example of structure learning

Current AIC=1E:

Hill-climbing search on M

llllllllll

To predict survival:
- Yes, age matters
- Yes, class matters
- Yes, sex matters
- Yes, class and sex together matter (eg knowing

that a particular man was in 1st class or crew)

- Yes, class and age together matter (eg knowing
that a particular child was in 1st or 3rd class)

- No, sex and age don't matter together for a
particular class (within each class, age and sex
interact with survival independently of one
another)




A B C | |
1 |Class Sex  Age Survived Freguency
2 |1st Male Child No 0
3 |2nd Male [Child No 0
4 [3rd Male Child No 35
5 |Crew Male Child No 0
6 |1st Female Child No 0
7 |2nd  Female Child No 0
8 [3rd Female Child No 17
9 |Crew Female Child No 0
10 |1st Male Adult No 118
11 [2nd  Male  Adult No 154
12 |3rd  Male  Adult No 387
13 [Crew Male  |Adult No 670
14 |1st Female Adult No 4
15 |2nd  Female Adult No 13
16 [3rd  Female Adult No 89
17 |Crew Female Adult No 3
18 |1st Male Child Yes 5
19 |2nd  Male  Child Yes 11
20 [3rd  Male  cChild Yes 13
21 |Crew Male Child Yes 0
22 |1st Female Child Yes 1
23 |2nd Female Child Yes 13
24 |3rd  Female Child Yes 14
25 |Crew Female Child Yes 0
26 |1st Male Adult Yes 57
27 |2nd  Male Adult Yes 14
28 [3rda  Male Adult Yes 75
29 |Crew Male  Adult Yes 192
30 |1st Female Adult Yes 140
31 |2nd Female Adult Yes 80
32 [3rd  Female Adult Yes 76
33 |Crew Female Adult Yes 20




Current AIC=1258

edge addition

sex-died 825
class-sex 851
class-died 1,083
class-age 1,115
sex-age 1,236
age-died 1,240

73% of women survived vs 1% of men




Current AIC=825

edge addition

ClaSS-Sex

class-died
class-age
sex-age
age-died

97% of the crew were men

419

650

683
804
808



Current AIC=419

edge addition

class-age
class-died
sex-age
age-died

2% of 1st class were children
8% of 2nd class were children
11% of 3rd class were children
0% of the crew were children

276
319
397
401



Current AIC=276

edge addition

class-died 117
age-died 267
sex-age 2172

62% of the people in 1st class survived

41% of the people in 2nd class survived
25% of the people in 3rd class survived
24% of the crew survived




Current AlIC=117
edge addition

70
95

age-died

sex-age

52% of children survived
31% of adults survived




Current AIC=70
edge addition

sex-age 712

=> stop



To redo this experiment

Just 4 lines of

> library(MASYS)

> data(Titanic)

> independence=loglm(~Class+Sex+Survived+Age,data=Titanic)
> step(independence,scope="~."2+.A3",direction="forward")




A simple example of structure learning

Current AIC=1E:

Hill-climbing search on M

llllllllll

To predict survival:
- Yes, age matters
- Yes, class matters
- Yes, sex matters
- Yes, class and sex together matter (eg knowing

that a particular man was in 1st class or crew)

- Yes, class and age together matter (eg knowing
that a particular child was in 1st or 3rd class)

- No, sex and age don't matter together for a
particular class (within each class, age and sex
interact with survival independently of one
another)




Learning a model from data

Search

Traditional algorithms: !
- local search (eg greedy, backward)
- simulated annealing
- genetic algorithms

Scoring

e .-
Sl y “'1 e, Scoring

model
Data ==- /
—

—» 325

Bayesian approaches & Frequentist approaches - MCMC/Gibbs
Avoid the definition of priors * etC

Aim: Finding the model A4 that, for a
dataset D maximizes pi A | DY) Also hundreds of methods and approaches Note .

ST DAL e el using statistical tests (eg Chi-sguared, .
otz prolalilily o Tohelim sz el il likelihood-ratio tests). - H 3
S B elloodbrato tests) - BN: scores also require an order on the variables

undreds of methods and references: EDeu, BDf See details in [1,2.3]

BDe, MDL, NML, etc.; see details in [1,2]. » i Pixi = lim Ty

o Tl
[1] Agrest. Categarical Data Analysis, \Wiley, 2002

[2] Koller and Friedman, Frobabilistic Graghical Wodgls, MIT

Press, 2002 fesp. 18.2 and 20.7}

= [4] Chrstensen, Log-inear matels and logatic regressian, 1996

— e
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Bayesian approaches

Frequentist approaches

Avoid the definition of priors
Aim: Finding the model M that, for a

dataset D maximizes p(M|D)
pM[D) o p(DIM)  x p(M)
Posterior probability o Likelihood x Prior probability.

Hundreds of methods and references: BDeu, BD/
BDe, MDL, NML, etc.; see details in [1,2].

Also hundreds of methods and approaches
using statistical tests (eg Chi-squared,
likelihood-ratio tests).

-—Jp See details in [1,2,3]
P(x)= lim —
nt—0o0 Ty
[1] Agresti, Categorical Data Analysis, Wiley, 2002.
[2] Koller and Friedman, Probabilistic Graphical Models, MIT
Press, 2009 (esp. 18.2 and 20.7)
[3] Christensen, Log-linear models and logistic regression, 1996.

[1] Koller and Friedman, Probabilistic Graphical Models, MIT Press, 2009 (esp. chapters 18 and 20)
[2] W. Buntine, A guide to the literature on learning probabilistic networks from Data, TKDE 1996.




Bayesian approaches

Aim: Finding the model M that, for a
dataset D maximizes p(M|D)

pM|D) o< p(DIM)  x p(M)
Posterior probability o¢ Likelihood x Prior probability.

Hundreds of methods and references: BDeu, BD/
BDe, MDL, NML, etc.; see details in [1,2].

[1] Koller and Friedman, Probabilistic Graphical Models, MIT Press, 2009 (esp. chapters 18 and 20)
[2] W. Buntine, A guide to the literature on learning probabilistic networks from Data, TKDE 1996.




Frequentist approaches

Avoid the definition of priors

Also hundreds of methods and approaches

using statistical tests (eg Chi-squared,
likelihood-ratio tests).

—Jp See details in [1,2,3]

1] Agresti, Categorical Data Analysis, Wiley, 2002.

2] Koller and Friedman, Probabilistic Graphical Models, MIT
Press, 2009 (esp. 18.2 and 20.7)

3] Christensen, Log-linear models and logistic regression, 1996.




Search

Traditional algorithms:
- local search (eg greedy, backward)
- sSimulated annealing
- genetic algorithms
- MCMC/GIbbs
- etc.

Note:
- BN: scores also require an order on the variables
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Maximal cliques and minimal separators

Let G = (V, E) be the undirected graph, where V is the set of
variables and F the set of edges in G.

( \,& Definition 1 A set C C V is a clique of G iff all its vertices
are parrwise adjacent.

Definition 2 A cliqgue C is maximal iff there is no vertex V €
) X V.V & C such that C U{V'} is a clique.

Definition 3 A set S CV is a separator of G if G = (V—S, F)
18 unconnected.

Definition 4 A separator S of G ts minimal if no subset of S
18 a separator.




What are decomposable models
o

Decomposable models are Markov Random Fields for which
the graph is chordal, ie triangulated

_ . PBCD (b,e,d) - pacpla,c,d)-pep(ee) prra(e, f,9)  pru(f ) - paily, i)
pep(e,d) - pe(e) -pe(e) - pr(f) - pely)




Properties of decomposable models

11 pe(x)
: _ 1loec
. p X B
1. Closed form MLE o__— u (%) [ls.5ps(x)

2. Not a big restriction: I
- Every distribution that can be modeled by a i
graphical model can be exactly modeled by | /\
some decomposable model [1] \ i
3. Junction-tree equivalence
- Spanning tree over clique-graph e e

- Exact and efficient belief propagation

4. MLE always exist [2]
5. Unambiguous - desirable property [1,4] ... {}
6. Intersection between BN and MRF [3]

[1] Christensen, Log-linear models and logistic regression, 1997.
[2] Agresti, Categorical data analysis, 2002.

[3] Koller and Friedman, Probabilistic Graphical Models, 2009.
[4] Malvestuto, Approximating Discrete Probability Distributions with Decomp. Models, IEEE TSMC, 1991.
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[1] Christensen, Log-linear models and logistic regression, 1997.
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[3] Koller and Friedman, Probabilistic Graphical Models, 2009.
[4] Malvestuto, Approximating Discrete Probability Distributions with Decomp. Models, IEEE TSMC, 1991.
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Unambiguous - interpretability

Francesco M. Malvestuto showed in [1] that:

"Since the relations of conditional independence can be
treated in an axiomatic way and the associated formal system
can be used as the inference engine of a common sense logic
for reasoning about relevance relations, decomposability is
a desirable quality fo belief networks."

This mainly comes from the fact that a chordal graph is an | 4 -
acyclic hypergraph (see Theorem 3.4 in [2]), which gives [
decomposable models the Markov property.

[1] Malvestuto, Approximating Discrete Probability Distributions with Decomp. Models, IEEE TSMC, 1991.
[2] Beeri and al., On the desirability of Acyclic Database Schemes, Journal of the ACM, 1983.
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(MRF)
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Useful algorithms

‘_4" o8’
t::q v A
p— qu . o
V vt
pSt c‘.{dﬁ" Ny T *
Verifying decomposablllty RS R e
Elimination game [1] : Bq.0) 7 RS A
o) : a'n>r
— ; e“d&?:s, ?31"' E‘LCLE' -
1955_.mwmw""‘ A‘tﬂ.‘;‘ c:ic‘j:' =
Lex-BFS [2] and MCS [3] [
- can find a peo for a chordal graph in linear time onac2®®
Verification: P !
o 02'-4-1%‘

1. find an vertex ordering ¢
2. chordal « [EliminationGame((7, o) == ()
—— Recognition in linear time O(n+m) prem—

[1] D.R. Fulkerson et al. Incidence matrices and interval graphs, Pacific J. Math. 1965, Tr i an g u Iat i o n

[2] . Rose et al., Algarithmic aspects of vertex elimination on graphs, SIAM J, Comput,, 1976
[3] R.E. Tarjan et al., Simple linear-time algorithms to test chordality of graphs, test acyclicity of

e e e e bhmates, 2006 Triangulation is easy -
B - eg Elimination game actually trlangulates
Minimum triangulation = as few edges added as
possible => NP-hard [1]
— B
Minimal trlangulatlc'ar'!w—b only one chord per | Ve
— square [2,3] => o(n™"") cD
De"v'ng junCtlon-tree Heuristics and simplifications for restricted classes

— bounded degree, perfect, trapezoid, AT-free, planar, ...

1] M, Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Algebraic Discrete
puting P! )

Methods, 1981

[2] D. Rose et al., Algorithmic aspects of vertex elimination on graphs, SIAM 1. Comput., 1976,

[3] P. Heggemes, Minimal riangulations of graphs: A survey, Discrete Mathematics, 2006.

. - - [4] P. Heggemes et al. Computing minimal triangulations in time O(n log n} = o{n 2.376 ), S1AM J.

2. compute a maximum spanning tree on the cllque Gise. Math.
I

graph - Kruskal's algorithm with negative weights [2]

Steps:
1. compute clique graph [1]

=3 Linear-time algorithms exist based on
Maximum Cardinality Search [1,3]

[1] P- Galinier et al., Chordal graphs and their clique graphs

cliques of a chardal graph, Information Processing Letlers, 2011,

[2] J.B. Kruskal, On the Shortest Spanning Subtree of a Graph and the Traveling Salesman

Problem. Proc, Amer, Math. Soc. 1956,

[3] R.E. Tarjan et al., Simple linear-time algorithms to test chordality of graphs, test acyclicity of

hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput., 1984,
—




Verifying decomposablllty

m Elimination Ganme

'nqjh O = {1, E) and

Lhe filled graph 5}

...... A-B s o)

| [ oo
c

= Byl

{!'.'-l.'r.n € by adding the edges ln F* 10 &' and removing ©
o=

1965

—» Problem: finding x

Lex-BFS [2] and MCS [3]
- can find a peo for a chordal graph in linear time

Verification:
1. find an vertex ordering v
2. chordal < (EliminationGame(G,a) == G)

—— Recognition in linear time O(n+m)

[1] D.R. Fulkerson et al. Incidence matrices and interval graphs, Pacific J. Math. 1965.

[2] D. Rose et al., Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput., 1976.
[3] R.E. Tarjan et al., Simple linear-time algorithms to test chordality of graphs, test acyclicity of
hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput., 1984.

[4] P. Heggernes, Minimal triangulations of graphs: A survey, Discrete Mathematics, 2006.




Triangulation

Triangulation is easy

- eg Elimination game actually trlangulates
Minimum triangulation = as few edges added as
possible => NP-hard [1]

l/"A —'/B )

Minimal tnangula’uor]e),FE only one chord per-
2 N N

square [2,3] => o(n""") c~b

Heuristics and simplifications for restricted classes
—>» bounded degree, perfect, trapezoid, AT-free, planar, ...

[1] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Algebraic Discrete
Methods, 1981.

[2] D. Rose et al., Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput., 1976.
[3] P. Heggernes, Minimal triangulations of graphs: A survey, Discrete Mathematics, 2006.

[4] P. Heggernes et al.Computing minimal triangulations in time O(n log n) = o(n 2.376 ), SIAM J.
Disc. Math.




Deriving junction-tree

Steps:
1. compute clique graph [1]

2. compute a maximum spanning tree on the clique
graph - Kruskal's algorithm with negative weights [2]

-3 Linear-time algorithms exist based on
Maximum Cardinality Search [1,3]

[1] P. Galinier et al., Chordal graphs and their clique graphs

cligues of a chordal graph, Information Processing Letters, 2011.

[2] J.B. Kruskal, On the Shortest Spanning Subtree of a Graph and the Traveling Salesman
Problem. Proc. Amer. Math. Soc. 1956.

[3] R.E. Tarjan et al., Simple linear-time algorithms to test chordality of graphs, test acyclicity of
hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput., 1984.
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All models

Decomposable models
are essential for
scalability, because...

HE B R ] Efficient scoring =]
I the gere: &, mast searing functions are in O] d" )
Sy -t ® A

™ e N R oy
— 2 TR
Eprald AR Rk B
e vanabas
Mt I foctus on Bayesian Netaorks
1 which have closed-torm MLEs
™ 2 % which mest seanes ane decompasat i
&

Efficient search

nnnnn

2. efficient search —

+ all the results we will show here




Efficient scoring =& —som |, ;.

model

Data = —
N

In the general case, most scoring functions are In O(d )
Example - likelihood ratio test x

{GQ(M) =2- Z . Z Oz, ...z, - In (gzﬂl,-.. T
Ty, T

zreEDom (X)) zpneDom(X,,) "
\\__ b
Y
Exponential with the Need to fit model first
number of variables

KL divergence, negative log-
likelihood, most MDL scores,
etc.

Need to focus on Bayesian Networks:
1. which have closed-form MLEs
2. for which most scores are decomposable

llllllllllll

wDocompasably moduks have dossd-lom MLEs




1,000 binary variables

\

10---000000 operations

10°° atoms in the
observable
universe...



Efficient search

Searching the space of BNs is not efficient because:

1. we often need to first define a total order C over
the variables

2. many BN structures are indiscernible from data

All models

]
15
i’

i
I
A2




Decomposable models

Ve TN / / N -
A-B) (C —— (A-B(C] —= (A~B] (C)
L - —~ = )
Lo = L/ =, - m—
i i N
LR TN AR
Ry R0, CRRNOSC
= N o
C C C)
f/E\] =N e F\'
b T "
N BT N
KR M )— N I{,/E'\.\l — \_ o N/ K E o—— v \_/ /E‘\
/1 /_’L\ /\\1 // — /T \.// H,’L\ - CEE——— //_I_ / /I\ /L\ =/
C—-Db) '\9/"“}9) ‘-»\9/-:“‘}9)
0



Scalable belief propagation

<=375=1%
(37.5-75] = 40%
(75-112.5] = 54%
>112.5=0%

<=118.5=7%
(118.5-167] = 73%
(167-215.5] = 14%
>215.5=1%

decomposable model
=> 50 we might as well directly learn from this class
Note: transforming a BN into a decomposable model is not easy.




B Otto m I i n e All models

A decomposable model is equivalent to:
- a Markov Network
- a set of equivalent Bayesian Networks

Bayesian Markov Log-linear
Networks Networks Models
(MRF)

[ Decomposable models ]

-l ANy scoring function that has been developed for MRFs*
or for BNs can be used for decomposable models

-l MRF: direct applicability
-l BN: derive and equivalent BN first and then use

* this implies metrics developed for log-linear models as well




Deriving a Bayesian Network from a
Decomposable Model

1. Take network

2. Find perfect elimination ordering - O(n+m)*
E— <7’7h7 f,g,e,c,d,a,b)

3. Convert to Bayesian network
Edge (a -> b) exists Iff:
1. (a-b) exists
2. a before b in peo

* see Slide "Verifying decomposability”




B Otto m I i n e All models

A decomposable model is equivalent to:
- a Markov Network
- a set of equivalent Bayesian Networks

Bayesian Markov Log-linear
Networks Networks Models
(MRF)

[ Decomposable models ]

-l ANy scoring function that has been developed for MRFs*
or for BNs can be used for decomposable models

-l MRF: direct applicability
-l BN: derive and equivalent BN first and then use

* this implies metrics developed for log-linear models as well




Most scores are scalable

Entropy [1]

Kullback Leibler [1,2] (because is minimized
when entropy Is also)

G-test statistic [3]

MML / MDL [4,5]

[1] Malvestuto, Approximating Discrete Probability Distributions with Decomp. Models, IEEE TSMC, 1991.
[2] Deshpande et al, Efficient Stepwise Selection in Decomposable Models, UAI 2001.

[3] Petitjean, Nicholson and Webb, Scaling log-linear analysis to high-dimensional data, IEEE ICDM 2013.
[4] Altmueller and Haralick, Approximating High Dimensional Probability Distributions, ICPR 2004.

[5] Petitjean, Allison and Webb, A statistically efficient and scalable method for log-linear analysis of high-
dimensional data, IEEE ICDM 2014.




HM) = - Z Z Py, xn) -Inp,(zy, -, z,)

r1€EDom(X1) axn€Dom(X,)

= ) H(X¢)- > H(Xs)

ceC Ses

—>» 0(2") = O(2")
where k is the size of the biggest clique




Most scores are scalable

Entropy [1]

Kullback Leibler [1,2] (because is minimized
when entropy Is also)

G-test statistic [3]

MML / MDL [4,5]

[1] Malvestuto, Approximating Discrete Probability Distributions with Decomp. Models, IEEE TSMC, 1991.
[2] Deshpande et al, Efficient Stepwise Selection in Decomposable Models, UAI 2001.

[3] Petitjean, Nicholson and Webb, Scaling log-linear analysis to high-dimensional data, IEEE ICDM 2013.
[4] Altmueller and Haralick, Approximating High Dimensional Probability Distributions, ICPR 2004.

[5] Petitjean, Allison and Webb, A statistically efficient and scalable method for log-linear analysis of high-
dimensional data, IEEE ICDM 2014.
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Scoring in greedy search

Candidate M1

Reference model
M#

00
CALO)

Generate J
candidate ..

Is M1 significantly
better than M*?

| Is M6 significantly

better than M*?

M* & best candidate

In this case, we only need...

Data

{a,b}

-
~
-
N——

—
=

Scoring:*
addition of

edge {a,b} to
model




greedy search

Candidate M1

Is M1 significantly
better than M*?

Reference model [ Select M* ]
M* ’
@?
o e Generate
- candidate Select
@ @ models best

Is M6 significantly
better than M*?

|

M* & best candidate

ve only need...



Scoring in greedy search

Candidate M1

Reference model
M#

00
CALO)

Generate J
candidate ..

Is M1 significantly
better than M*?

| Is M6 significantly

better than M*?

M* & best candidate

In this case, we only need...

Data

{a,b}

-
~
-
N——

—
=

Scoring:*
addition of

edge {a,b} to
model




Scoring the addition of an edge to a model
score(M, (a,b), D) = score'(a,b, Sy, D)

e

Sab : minimal separator of (a,b)
= minimal set of vertices that
would disconnect a from b if
removed from the graph
={c,d}

scoze(M,{a,_b}) = score' ({a,b,c,d} , {a,c,d} , {b,c,d} , {c,d})

Sabua Sab
SabUGUb SabUb




This has been proven for different scorings

- Statistical tests (G-test) [1]
- MML/MDL [2]

- Entropy / KL divergence [3]

Assessing the addition of one edge to this model?

/ \

We only need to
consider 4 cliques

[1]: F. Petitjean et al., "Scaling log-linear analysis to high-dimensional data," in ICDM 2013.

[2]: F. Petitjean et al., "A statistically efficient and scalable method for log-linear analysis of high-
dimensional data," in ICDM 2014.

[3]: A. Deshpande et al., "Efficient stepwise selection in decomposable models," in UAI 2001.




Assessing the addition of one edge to this model?

We only needto -
consider 4 cliques




Clique graph (CG)

<[,

Definition of a cligue-graph: [1]
- Maximal cliques of the graph => nodes of the clique-graph (CG)
o (01,02) in CG iff Va € (Cl \ CQ) Vb € (CQ \ Cl) S = C1 N CY

-y The clique-graph holds the information about the minimal
vertex separators of all potential edges [1].

-y The clique-graph can directly tell us if an edge can be
added to the graph while keeping it chordal.

= Maximal cliques computed in O(n+m) with MCS or BFS.
-l Edges computed in one pass over the cligues (see "Weak
Triangulation Lemma" in [1])

[1] Galinier et al., "Chordal Graphs and Their Clique Graphs," in WG 1995.




Clique graph and greedy search

() (D—)
(| o< —
(] ()—®

*add edge {f.q}

Jpf €

We can directly update the structure of the clique graph [1]

This means that we can quickly identify minimal separators and
thus know what cligues to use when scoring the addition of an
edge to the current model.

score(M,{a,b}) = score'({a,b,c,d} , {a,c,d} , {b,ec,d} , {c,d})

[1]: A. Deshpande et al., "Efficient stepwise selection in decomposable models," in UAI 2001.




earch and statistical paradigm

Frequentist approaches

« Currently best
statistical efficiency [1]

« Parameter-free (no

- Only greedy search,
because can only
score the comparison
of nested models

- Randomized search
available, because it
scores models
independently

- Not parameter-free

» Currently inferior
statistical performance*

priors to define) - Makes it possible t

integrate priors
+ Easier integration in a
decision making process

- Growing criticism of
the community when
used directly for
decision making (see

for example [2]) * So far, no Bayesian scoring has been specifically developed for

decomposable models (only MDL/IMML [1,2]) - Open

[1] Petitjean, Nicholson and Webb, Scaling log-linear

analysis to high-dimensional data, IEEE ICDM 2013. P(X) = lim — [1] Altmueller and Haralick, Approximating High Dimensional Probability Distributions, ICPR 2004. ) ) )
[2] Nuzzo, "Scientific method: Statistical errors”, Nature 2014, nt—oe 11 Egt?:géeé?égusgg 134er Webb, A statistically efficient and scalable method for log-linear analysis of high-dimensional
Multiple testing

Frequentist approaches:

1. Choose a significance level o (eg = 0.01)
2. Assess probability p of observing data given null hypothesis
3.0 p <2 o then reject null hypathesis
—3 This guarantees that the chance of falsely
rejecting the null hypothesis is less than o
Wiy do we need multiple testing corrections?
smaking au oreve i 1 test | il is bee] = o

aside note

i A o fu T prsta

Jensit vain exrar i T b ) =1 — (1"

Standard solution: choose ¢ = % {Bonferrani)

But, for motel selection, we do not know T
solutions




Frequentist approaches

- Currently best
statistical efficiency [1]

- Only greedy search,
because can only
score the comparison
of nested models

- Parameter-free (no
priors to define)

- Growing criticism of
the community when
used directly for
decision making (see
for example [2])

[1] Petitjean, Nicholson and Webb, Scaling log-linear
analysis to high-dimensional data, IEEE ICDM 2013. P(x) =
[2] Nuzzo, "Scientific method: Statistical errors”, Nature 2014.



Bayesian approaches

- Randomized search - Not parameter-free
available, because it
scores models

iIndependently

- Makes it possible t
Integrate priors

- Easier integration in a
decision making process

- Currently inferior
statistical performance*

* So far, no Bayesian scoring has been specifically developed for
decomposable models (only MDL/MML [1,2]) e Open

[1] Altmueller and Haralick, Approximating High Dimensional Probability Distributions, ICPR 2004.
[2] Petitjean, Allison and Webb, A statistically efficient and scalable method for log-linear analysis of high-dimensional
data, IEEE ICDM 2014.




Multiple testing

Frequentist approaches:

1. Choose a significance level « (eg = 0.01)
2. Assess probability p of observing data given null hypothesis

3. If p < « then reject null hypothesis

- This guarantees that the chance of falsely
rejecting the null hypothesis is less than ¢

Why do we need multiple testing corrections?

p(making an error in 1 test |null is true) = «

p(not making an error in 1 test |null is true) = 1 — « / i
p(not making an error in T tests|null is true) = (1 — a)”

p(making at least one error in T tests |null is true) =1 — (1 — «

)T

Standard solution: choose CB’ — % (Bonferroni)

But, for model selection, we do not know T\)

solutions
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Multiple testing

Frequentist approaches:

1. Choose a significance level « (eg = 0.01)
2. Assess probability p of observing data given null hypothesis

3. If p < « then reject null hypothesis

- This guarantees that the chance of falsely
rejecting the null hypothesis is less than ¢

Why do we need multiple testing corrections?

p(making an error in 1 test |null is true) = «

p(not making an error in 1 test |null is true) = 1 — « / i
p(not making an error in T tests|null is true) = (1 — a)”

p(making at least one error in T tests |null is true) =1 — (1 — «

)T

Standard solution: choose CB’ — % (Bonferroni)

But, for model selection, we do not know T\)

solutions




Apply the Bonferroni correction to the maximum total number
of tests (greedy search):

first step: w tests

second step: %_1) — 1 tests

last step: 1 test

n-(n—1) n-(n—l)_|_1

Total: —2——=—2 = O(n*) = too strong when n > 30 [1]

Layered (ie budget) correction; at each step, use k% of the
remaining budget [2]

- first step: o/ =0.01 - « f_,,,,J

- second step: o/ =0.01- (a — 0.01q)

-3 But, Iimplies prior about where to use the budget

-3 Multiple correction for model selection is an open problem

[1] Perneger, "What's wrong with Bonferroni adjustments," BMJ 1998.
[2] Petitjean et al., Scaling log-linear analysis to high-dimensional data, IEEE ICDM 2013.
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Apply the Bonferroni correction to the maximum total number
of tests (greedy search):

first step: w tests

second step: %_1) — 1 tests

last step: 1 test

n-(n—1) n-(n—l)_|_1

Total: —2——=—2 = O(n*) = too strong when n > 30 [1]

Layered (ie budget) correction; at each step, use k% of the
remaining budget [2]

- first step: o/ =0.01 - « f_,,,,J

- second step: o/ =0.01- (a — 0.01q)

-3 But, Iimplies prior about where to use the budget

-3 Multiple correction for model selection is an open problem

[1] Perneger, "What's wrong with Bonferroni adjustments," BMJ 1998.
[2] Petitjean et al., Scaling log-linear analysis to high-dimensional data, IEEE ICDM 2013.
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Counting efficiently rt*vv

Scoring - for example with KL minimized when...

Y H(X¢)— ) H(Xs) is minimized.
cecC SesS

What does it mean to compute H (X )?
Take clique = ABC'"

= efficient scoring boils down to efficient counting

acAbeB ceC

= Y Oucapbime - (M Oacq popome —~ 0 N)

acAbeB ceC

where Oa—4 B=p.c=c 1S how many instances in the dataset have A = a and
B=band C =c.



Counting efficiently (2) ",&

1
H(ABC) = N y: Sj : Oa=a,B=b,c=c - (IN 04—y, B=p,c=c —In N)
acAbeB

Being able to quickly count how many instances with this
CO nflguratlon Of A,B,C Vertical rewifzm:::rllh .

—3 \/ertical representation of the dataset o

What does that change?
-3 How many tall females in the dataset?
OG=female ti=tall = | T'IDs (Gender = female) m T1Ds (Height = tall) ‘

. . Data structures for TID sets
- Data structure for fast intersection R ) = (L0 140
Advantage: intersection in O(size of the largest TID sel)
storane (M x 12bits)
data

« 5EE Als0 compressed bitmaps
(Ruaring bitmaps [1], Concise [2], ele.)

it FrEcioe s Epesence 0 oges)
g Lavtars, 2




Vertical representation

Horizontal

Vertical

—_

TID | Gender | Age | Height
1 female 60+ tall
2 female 10-20 short
3 male 40-50 tall
14,329 | female | 10-20 tall
14,330 male 604 short

T1Ds(Gender = female)

TIDs(Gender = male) =

TIDs(Height = tall)

(1,2,---,14329}
{3,---,14330}

{1,3,---,14329}
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Data structures for TID sets

Sorted sets of integers
TIDs(Gender = female) = {1,2,.--,14329}

Advantage: intersection in O(size of the largest TID set)
Drawback: storage (N x 32bits)

=> Good for sparse data

Bitmaps
TIT _(am.l:r_ Agy | Huighe | Wupifmnk

Bitmaps —————sccll)

Advantages:
- Intersection time independent of data sparsity

- storage N x 1 x "avg attribute cardinality" bits
Drawback: T <32

- Intersection in O(N) - but fast implementation

... see also compressed bitmaps
(Roaring bitmaps [1], Concise [2], etc.)

[1] Chambi et al., "Better bitmap performance with Roaring bitmaps," in Software: Practice and Experience (to appear)
[2] Colantonio et al., "Concise: Compressed 'n’ Composable Integer Set," Information Processing Letters, 2010




Bitmaps

TID | Gender | Age | Height || bitmap(female) bitmap(tall)
1 female 60+ tall 1 1
2 female | 10-20 short 1 0
3 male 40-50 tall 0 1
14,329 | female | 10-20 tall 1 1
14,330 male 60+ short 0 0

In memory: arrays of long integers (64bits)

Intersection - for each word in the array:
1. perform a logical AND (0.5 CPU cycle*)
2. perform a popcount (1 CPU cycle*)

*see http://www.intel.com/products/processor/manuals/
Eg {0 compute Oc=rtemalei=tan = | TIDs (Gender = female) ﬂ TIDs (Height = tall) |
gy about 1.5 * 14331/ 64 = 335 cycles

vs 0.5 * 14331 / 3 = 2389 cycles for sorted arrays of integers

N . > assumed size of the biggest set
comparison




Data structures for TID sets

Sorted sets of integers
TIDs(Gender = female) = {1,2,.--,14329}

Advantage: intersection in O(size of the largest TID set)
Drawback: storage (N x 32bits)

=> Good for sparse data

Bitmaps
TIT _(am.l:r_ Agy | Huighe | Wupifmnk

Bitmaps —————sccll)

Advantages:
- Intersection time independent of data sparsity

- storage N x 1 x "avg attribute cardinality" bits
Drawback: T <32

- Intersection in O(N) - but fast implementation

... see also compressed bitmaps
(Roaring bitmaps [1], Concise [2], etc.)

[1] Chambi et al., "Better bitmap performance with Roaring bitmaps," in Software: Practice and Experience (to appear)
[2] Colantonio et al., "Concise: Compressed 'n’ Composable Integer Set," Information Processing Letters, 2010
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- Data structure for fast intersection R ) = (L0 140
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data

« 5EE Als0 compressed bitmaps
(Ruaring bitmaps [1], Concise [2], ele.)
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Candidate M1

Is M1 significantly
better than M*?

Memoization

Reference model

Select M*

Generate |/
candidate ..

- -
From the high-level perspective,
many elements of the process will
be repeated:

Is M6 significantly
better than M*?

-3 Addition of same edge considered several times
(to different models)

-3 Different edges' scores might share sub-scores

-3 Different sub-scores scores might share elements

1
_N y: y: y: OA:a,B:b,C:c . (111 OA:a,B:b,C:c —In N)
acAbeB ceC




Candidate M1

Is M1 significantly
better than M*?

Reference model
M*

@ @ Generate
candidate
G 0 models

Select M*

Select

best

Is M6 significantly
better than M*?

dered several times




Candidate M1

Is M1 significantly
better than M*?

Memoization

Reference model

Select M*

Generate |/
candidate ..

- -
From the high-level perspective,
many elements of the process will
be repeated:

Is M6 significantly
better than M*?

-3 Addition of same edge considered several times
(to different models)

-3 Different edges' scores might share sub-scores

-3 Different sub-scores scores might share elements

1
_N y: y: y: OA:a,B:b,C:c . (111 OA:a,B:b,C:c —In N)
acAbeB ceC




Memoization and Entropy computation

Reminder: most clique scores are functions of the entropy
(KL divergence, G-test, MDL, etc.)

H(A) — _% 3" 04 (02 —In N)

xXEA

1
— Z partial _em;frmt:'y(O;i1 )
xcA

and... VA,Vz,02 ¢ [0,N] c N

-y TNIS Means that we can precompute all possible
"partial entropies” and store them in an array

This memoization makes the time spent in computing
entropies to go from more than 99% to less than 1%



Candidate M1

Is M1 significantly
better than M*?

Memoization

Reference model

Select M*

Generate |/
candidate ..

- -
From the high-level perspective,
many elements of the process will
be repeated:

Is M6 significantly
better than M*?

-3 Addition of same edge considered several times
(to different models)

-3 Different edges' scores might share sub-scores

-3 Different sub-scores scores might share elements

1
_N y: y: y: OA:a,B:b,C:c . (111 OA:a,B:b,C:c —In N)
acAbeB ceC




Memoization of clique sub-scores

Reminder: with 4 values per variables, a clique s /o1
of size 8 will have to iterate over 65,535 - ='| TN e
combinations of values, eg summing over S A it
65,535 cells ====Pp not negligible —\ e T
Use a hashmap to sub-score associated to each clique.

Hashing function: Vv = {ABCDFEFGHIJK,L M}

ECML : 0010100000011
hWECML) = 7366

standard java hash

public int hashCode() {
long h = 1234;
long[] words = toLongArray();
for (int i = words.length; --1i >= 0; )
h = words[i] * (i + 1);
return (int)((h >> 32) ~ h);

AN N\




Candidate M1

Is M1 significantly
better than M*?

Memoization

Reference model

Select M*
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From the high-level perspective,
many elements of the process will
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1
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Addition of the same edge to different
reference models

What we have seen so far:

- Evaluating the addition of an edge only depends
upon 4 cligues of the graph

Cnly 2 few edges need (o
e
L] L] L] Salact e g h)
Scarefng
_’ T 1-1\3. . b: nl‘i‘d
W ok

How can we use this information?

We know: i 5, does nol change betwes different e
modifications of the graph, then the addition of {a,b} need . J
not be re-pxamined p] |

. 1. Use a data structure that gives direct RS
‘\ S ACCess o minimal separators foe e e S W
e o
. al

Buery S
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2. Keep 2 mini separators for i
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Only a few edges need to be re-examined at any
step

score(M {a,b}) = score’({a,b,c,d} , {a,c,d} , {b,c,d} , {c,d})

Select edge {g,h}

Ve

score(M, {a,b}) = score’({a,b,c,d} , {a,c,d} , {b,c,d} , {c,d

Score({a,b})
did not change

The addition of edge {a,b} need not be
re-examined in the new model




#evaluations

100,000,000

10,000,000

This is how many edges are evaluated
1,000,000
4 orders of
100,000 .
magnitude J
10,000 l
1,000
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10
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We know: if S, does not change between different
modifications of the graph, then the addition of {a,b} need
not be re-examined

1. Use a data structure that gives direct
access to minimal separators for every

‘13\ potential edge @ A

2. Keep track of the minimal separators for

every potential edge 0

3. Maintain an ordered list of all the/\

potential edges (priority queue) \9%\\‘\
O




Clique graph
0 (O—@

A | G —
%o

iadd edge {f.q}

Jpf €

-y | NEre are algorithms that can directly
update the clique-graph [1,2]

[1] A. Deshpande et al., "Efficient stepwise selection in decomposable models," in UAI 2001.
[2] F. Petitjean et al., "Scaling log-linear analysis to datasets with thousands of variablesi" In SDM 2015.




Clique graph
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Jp, e-e
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———3p There are algorithms that can directly
update the cliqgue-graph [1,2]

2] F. Petifean & al., "Scaling log-linear analysis o datasets with thousands of variables® In S0M 2015,

[1] A. Deshpande ef al, "Eficlent stepwise selection in decomposable models,” in UA? 2001,
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Add a-b
- Update a-e

0090 0

vl v2| separator
—5 5 23
e f {} 60.9
a e {} 49-5-
a f {} 42.8
b {} 31.4
e {} 31.0
a c {} 28.8
b f {} 17.1
c d {} 16.9
b c {} 12.7
c f {} 8.1
d e {} 7.3
d f {} 4.8
e f {} 4.6




0000

vl v2| separator | score
e—+F ! 665
a—F £ 42~
© O =
c e {} 31.0
a c {} 28.8
b f } T
C {} 16.9
b {} 12.7

e

Add e-f
- Update b-f
- disable a-f

T QoaQn w
-~ =" D = D N

{b}
{}
{}
{}
{}

12.4
8.1
7.3
4.8
4.6




0000

. disable c-f

vl v2| separator

—e . s

o c e } 316

a C } 266

C {} 16.9

f {e} 14.0

b b c {} 12.7

Add b-c a e| {b} 12.4
e—+F =+ S+

- Update a-c d el 0 23
. _ d f {} 4.8
update c-e - o e




separator

Ik

N

DT Q Q U T T N

- D D O QO D D

S

{b}
{}
{e}
{}
{b}
{}
{}
{}

24.2
16.9
14.0
12.7
12.4
7.3
4.8
4.6



separator

-1

A0
T

[cf[ {er | 494

Add c-e
- Update a-e
- enable c-f

| b}

/{}

C d 0
e

L~J

{}
{e}
{}

{}

16.9
14.0
12.7

7.3
4.8
4.6



How fast can we get?

~

10 days

[ ] Version 1 - efficient scoring + memoization - "
1 day {[[] Version 2- V1 + CG _

{8 Version 3 - V2 + keep track separators
1 hour ;M Version 4- V3 + priority queue

LI 1111 1) TERRRRURRRNRIRIRRRRNUNRRINNY (RN R —
o iln- = Li-ih | | |
P Protein Orphamine NYT

#vars 20 25 /0 85 300 500 500 700 1,200 2,000

®

Che
F1EEES New ork
USSR ) Times

4

Randomly picking k variables.
== 1idl words published by...

{ .//




Randomly picking k variables Clhe
-> tf.idf words published by... New 1lork

Cimes
1 daysg------ Rt AL LR LE OGP e e e L LR LR LR PR T
1 Version 1 ~Chordalysis (2013)
| : Version 3
QUL Jrommmmm g Version 2 ==" =~ T
I3 ming-----f T T g
_ Version 4
lminy /'~ A Prioritized Chordalysis

1s

| | | |
0 500 1000 1500 2000




Scalable learning of graphica

Introduction - Motivation

Graphical models 101

Graph theory

Evaluation - Scoring

Break

Efficient search

The nitty-gritty

Use cases

Wrapping up!

What & & probabislic ;
prtstiy |

Gty rcatiey ot backirn e

Lalaw T
“lale w
il y
o Compuacty prnmring ptndly o |
Classes of graphical models

o Vil B! -
1. scalable scoring =

2 etlcient search

2. scalable belie propegation

= all the et wewil show here

[ What are graghical models usedd far?

Whai vee wil and will not couesr

+ Wil Ui, 6 iyl e
Tt meshies .

A

A simple cxample of soucoere leaming
b aganh o M L AT

FTET TR

Most soores are soalable
Entrogy (1]
Lok 1. P vt
e way

F—

e

models

el algorithens

——

Seoring in greedy search

Couning sty

S - lor aemgie e KL riri e

is futorial in a nustshell
1 Db v v ey il
) ke I 450
- et rep

g kv
gue ' it

2 Elertc i s
btk i

4 Theo o 5l 4 sch e b o’

Cligue graph and greedy search
s 88

JLEramm——
- 3D jpanrn ! pading

| Open problems
1. ikt it

Open problems (2)
I e 1 e o v
O oL ST T VU [ S ————

1. Effrsent sxssn gl msspesl sty

4. P vt b by eerieg
o e BT O e g

B Lmamirg pat o oo

Search and statistical paradigm

Hew fasl zan e gua?

How rhn e s

R —

Wi o el s o v o

Scalatie lesming i gragtvesl o
Frargus bt and e s




Study of the elderly

- 25 variables
- 15,000 patients

2 'S

Belief propagation

New patient, Lan, is visiting her !
new GP, the GP wanls to check -
her risk of getting a few diseases: L+,
stroke, diabetes, heart attack.

evidence  |stroke|diabetes|heart attack
female under 70 5% 15% 10%
+ marned 5% 15% 8%
+ smaokirg 7% 175 12%
+ BP=17/10 B9 I7% 13%
+no help fo walk 5% 16% 12%
+ quif srmoking? 4% 14% 9%




Female

A B C D G H J K M T u vV w Y
Gender Age EverMai Married Working Retired Correcti HelpToV WalkMil HeartAt Stroke Cancer Diabete Insulin HighBlo MedForl PainWal EverPre ShortBr Weight Height 2ndBlod 2ndBloc Smokini Eversmo
Male B85over Yes Separate No es 7 Help No No No No No No Yes No No 7 No V(133-17 v(60.5-65 7 ? No Yes
Female B85over Yes Divorced No No Incomect NoHelp Yes No No No No No No No No ? No \'(-inf-132\'(-inf-60. \'(118.5-1\'(37.5-7% No No
Male BSover | Yes NowMarr ? ? Incorrect NoHelp No No No Yes No No No No Yes ? No \'(-inf-13: \'(60.5-65 1'(118.5-1\'(37.5-7% No Yes
Male 80-84 Yes NowMarr No Yes Incorrect NoHelp Yes No No No No No No No No ? No \(133-17 v(69.5-im \'(167-21 \'(75-112 No Yes
Female B80-84 Yes Divorced No No Incomrect Help No No No No No No No No No ? No ? ? ? ? No No
Female 85over No ? No Yes Comrect NoHelp Yes No No No No No No No No ? No \'(-inf-13: \'(-inf-60. \'(118.5-1\'(75-112 No No
Female 80-84 No ? No No Incomrect NoHelp No No No No No No Yes Yes No ? No \'(133-17 \'(60.5-65 \'(118.5-1\'(37.5-7° No No
Male B80-84 Yes NowMarr No Yes Incomect NoHelp No No No No No No Yes Yes No ? No V(133-17 \'(65-69.5 \'(167-21 \'(75-112 No Yes
Female B80-84 Yes Divorced No Yes Incomect NoHelp No Yes No No No No No No No No No \'(133-17 \'(60.5-65 \'(118.5-1\'(75-112 No No
Male B80-84 No ? No Yes Incomect NoHelp Yes No No No No No ‘fes No No 7 No \(172-21 \'(65-69.5V'(167-21 \'(75-112 No No
Female 75-79 Yes Divorced No No Incomect NoHelp No No No Yes No No No No Yes ? No \'(133-17 \'(60.5-65 ? ? Yes Unknown
Male 80-84 Yes NowMarr Yes Yes Incomrect NoHelp  Yes No No No No No No No No ? No V(133-17 \'(60.5-65 \'(118.5-1\'(75-112 Yes Unknown
Female 80-84 Yes Divorced No Yes Incorrect Help No Yes No No No No No No No ? No \(172-21 \'(60.5-65 \'(118.5-1\'(37.5-7¢ No No
Male 75-79 Yes NowMarr No Yes Incomect NoHelp Yes Yes No No No No No No No ? No \(133-17 \'(69.5-in ? ? No No
Female 80-84 Yes Divorced No Yes Incorrect NoHelp Yes No No No No No No No Yes 7 No V(-inf-132 7 V(118.5-1\(75-112 Yes Unknown
Male 75-79 Yes Divorced No Yes Incomect NoHelp Yes No No No No Mo Yes Yes No 7 No V(172-21 \'(65-69.5\'(167-21 \'(75-112 No Yes
Male 75-79  Yes NowMarr ‘Yes No Incomrect NoHelp Yes Yes Suspect No Suspect No No No No ? No \'(172-21 \'(69.5-in \'(118.5-1\'(37.5-7¢ No No
Male B80-84 Yes NowMarr No Yes Incomrect NoHelp Yes No Mo No No No Yes Yes No ? No \(133-17 V(65-69.51'(118.5-1\'(75-112 No es
Female 75-79 Yes NowMarr No ‘Yes Comect NoHelp Yes No No No No No Yes No No ? No \'(133-17 \'(60.5-6 '(118.5-1\'(75-112 No No
Female 75-79 Yes Divorced No No Incomect NoHelp  Yes No No No No No No No No ? No \'(-inf-13: V'(60.5-65 \'(-inf-11¢ \'(37.5-7¢ No No
Female 80-84 Yes NowMarr No No Incorrect NoHelp Yes No No No No No No No No ? No V'(133-17 V(60.5-6° \'(167-21 \'(37.5-7F No No
Female 75-79 Yes NowMarr No Yes Incorrect NoHelp Yes No No No No No Yes Yes No ? No \'(-inf-132\'(60.5-65 \'(167-21 \'(37.5-7% No No
Male 75-79  Yes Divorced No Yes Incomrect Help No No No No No No Yes Yes No Yes No \'(133-17 V'(89.5-im V'(-inf-11¢ \'(37.5-75 No Yes
Male B80-84 Yes Divorced Yes Yes Incomect NoHelp  Yes Suspect Mo No No No No No No 7 No V(133-17 \'(60.5-65 V'(167-21 \'(75-112 Yes Unknown
Female 70-74 Yes NowMarr No Yes Incomect NoHelp Yes Yes No Yes No Mo No No No 7 No \'(-inf-13: \'(-inf-60. \'(118.5-1\'(37.5-7% No Yes
Male 70-74 Yes Divorced No Yes Incorect NoHelp Yes No No Yes No Mo No No No 7 No V(211-inf \'(65-69.5 \'(118.5-1 \'(75-112 Yes Unknown
Female 80-84 ? ? ? ? Correct  ? No No No No No No No No No ? No ? ? ? ? ? Unknown
Female 70-74 Yes Separate No No Incomect NoHelp Yes No No No No No Yes Yes No ? No \'(-inf-13: \'(-inf-60. \'(118.5-1\'(37.5-7< No Yes
Male 70-74  Yes NowMarr No Yes Incomrect NoHelp Yes No No No Yes No No No No ? No V(133-17 V(65-69.51'(118.5-1\'(37.5-75 No No
Male 80-84 No ? No Yes Incomrect NoHelp  Yes No Yes No No No No No No ? No \'(133-17 V(60.5-6° \'(118.5-1\'(75-112 No Yes
Female 70-74  Yes Divorced Yes Yes Incorect NoHelp Yes No No No Yes No Yes Yes No ? No \'(172-21 7 V(118.5-1\(75-112 No No
Female 70-74 Yes NowMarr No Yes Incomect NoHelp Yes No No No No No Yes No No ? No \'(133-17 \'(80.5-65 \'(118.5-1V'(75-112 Yes Unknown
Male 70-74 | Yes NowMarr No Yes Comrect NoHelp Yes No No No No No Yes No No ? No \'(172-21 \'(65-69.5 \'(118.5-1\'(37.5-7¢ No Yes

70-74  Yes NowMarmr No fes Incomect NoHelp Yes No No Yes No No No No No 7 No V(133-17 V(60.5-65 \'(118.5-1 \'(75-112 No No
Male under70 Yes NowMarr Yes Yes Incomrect NoHelp  Yes No No No No No No No No ? No \'(-inf-13: \'(69.5-in \'(-inf-11f \'(37.5-7% No No
Female 70-74 Yes Divorced No No Incomrect NoHelp No No No No No No No No Yes No No ? \'(60.5-65 V'(118.5-1\'(37.5-7¢ No No
Male 70-74  Yes NowMarr No Yes Incomrect NoHelp Yes No No No No No No No No No No \'(211-inf \'(65-69.5 1'(118.5-1\'(37.5-7¢ No Yes
Female 80-84 Yes Divorced No Yes Incorect NoHelp Yes Yes No No No No No No No ? No \'(-inf-13: \'(60.5-65 \'(118.5-1 \'(37.5-7¢ Yes Unknown
Female 75-79 Yes Divorced No No Incomrect Help Yes No No No No No Yes Yes Yes No No V(133-17 \'(60.5-65 \'(118.5-1\'(75-112 No No
Male 70-74  Yes NowMarr Yes No Incorect NoHelp Yes No No No No No No No No ? No \'(172-21 \'(65-69.51'(118.5-1\'(75-112 No No
Female 80-84 Yes Divorced No No Incorrect NoHelp No No Yes No No No No No No es Yes V(133-17 \'(65-69.2 \'(118.5-1\'(37.5-7% No No
Female 75-79 Yes NowMamr No ‘Yes Incomect NoHelp Yes No No No No No No No No No No \'(133-17 \'(-inf-60. \'(167-21 \'(75-112 No No
Male under7o Yes Divorced No Yes Incorrect NoHelp Yes No No Yes No No ‘Yes Yes No No No \(133-17 \'(60.5-65 1'(118.5-1\'(75-112 No Yes
Female 75-79 No ? No No Incomect NoHelp  Yes No No No No No No No No ? No ? \'(60.5-65 \'(167-21 \'(75-112 No No
Female 75-79 Yes NowMarr No Yes Correct Helo No Yes No No No No Yes Yes No Yes Yes \'(-inf-132 V(60.5-65 \'(118.5-1\'(75-112 No No







Belief propagation
New patient, Lan, Is visiting her !

new GP; the GP wants to check ~ #
her risk of getting a few diseases: ...,

stroke, diabetes, heart attack.

stroke |diabetes |heart attack

10%
9%
12%
13%
12%
9%

evidence

female under 70
+ married

+ smoking
+ BP=17/10

+ no help to walk
+ quit smoking?




Study of the elderly

- 25 variables
- 15,000 patients

2 'S

Belief propagation

New patient, Lan, is visiting her !
new GP, the GP wanls to check -
her risk of getting a few diseases: L+,
stroke, diabetes, heart attack.

evidence  |stroke|diabetes|heart attack
female under 70 5% 15% 10%
+ marned 5% 15% 8%
+ smaokirg 7% 175 12%
+ BP=17/10 B9 I7% 13%
+no help fo walk 5% 16% 12%
+ quif srmoking? 4% 14% 9%
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Insurance customer management aitE

- 80 variables ?0“2’
- 6,000 customers - _

Belief propagation F
New customer, Mat, is visiting his
new branch; the customer -

representative takes the opportunity
to check potential for new insurance
policies.
evidence | fire | wvan | life




\ Custome! Number of Avg size household Avg age' Customer main typé Roman catholic Protestant Other religiof No religiof Married Living togeme' Other rela Singles' Household without childre Household with childre High level edt
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Insurance customer management aitE

- 80 variables ?0“2’
- 6,000 customers - _

Belief propagation F
New customer, Mat, is visiting his
new branch; the customer -

representative takes the opportunity
to check potential for new insurance
policies.
evidence | fire | wvan | life




Portfolio management

- 500 variables
- 20 years of trading

Belief propagation

Financial adviser wanis lo see how

the market might behave given a
few speculations over stocks.

(]
m I|MERCK Rouan By Lowwss
. - il
evidence
M AN AN AN~
prior 19%-19% | 23%-22% | 129%-13% | 23%-25%%
Ea——— 2106-21% | 279-30% | 13%-13% —_
eb raamelfefien N 21%-20% _— 3406-15% | 24%-25%

o | 26v200 | 3496088
a- — -

- Hetflix neods dives?
- Merck ard 18 a2 in the same cluster

23%-255%

2506-37%

com Sy AMAZN and AL hawve 0.8% comelation coefficient

Eutte. e, byngisides comd
+ Exiemal facior? Sales of Ralph Lauren an Amazon.com?
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1 AGILEN ALCOAIN APPLEINC AbbVieln AMERISO ABBOTTL ACELTDN ACCENTL ACTAVISI ADOBESY ANALOGI ARCHERL AUTOMA AUTODE® ADTCORF AMEREN! AMERICA AESCORF AETNAIN AFLACIN! ALLERGA AMERICA APARTME ASSURAMN AKAMAIT ALL
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stable stable notrade stable |stable stable notrade stable stable stable stable stable stable notrade stable stable stable stable stable |stable up stable notrade down
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Portfolio management

- 500 variables
- 20 years of trading

Belief propagation

Financial adviser wanis lo see how

the market might behave given a
few speculations over stocks.

(]
m I|MERCK Rouan By Lowwss
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evidence
M AN AN AN~
prior 19%-19% | 23%-22% | 129%-13% | 23%-25%%
Ea——— 2106-21% | 279-30% | 13%-13% —_
eb raamelfefien N 21%-20% _— 3406-15% | 24%-25%

o | 26v200 | 3496088
a- — -

- Hetflix neods dives?
- Merck ard 18 a2 in the same cluster

23%-255%

2506-37%

com Sy AMAZN and AL hawve 0.8% comelation coefficient

Eutte. e, byngisides comd
+ Exiemal facior? Sales of Ralph Lauren an Amazon.com?
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Belief propagation

Financial adviser wants to see how
the market might behave given a
few speculations over stocks.

| CAT | [EHNIN | ' MERCK | RumbLue
evidence \ ~ \ »

prior 19%-19% | 23%-22% | 12%-13% | 23%-25%
seagate (C 219%-21% | 27%-30% | 13%-13% —
Johmsonfolmon Ny | 219%-20% — 34%-15% | 24%-25%

&\ | 26%-20% | 34%-26% —_— 23%-25%

d

N
- Netflix needs drives?
- Merck and J&J are in the same cluster
- http://www.buyupside.com/ says AMAZN and RL have 0.89 correlation coefficient

- External factor? Sales of Ralph Lauren on Amazon.com?

25%-37%




Scalable learning of graphica
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Graphical models 101

Graph theory

Evaluation - Scoring

Break
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The nitty-gritty

Use cases
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This tutorial in a nutshell

1. Graphical models are extremely useful:
- Extracting knowledge from data
- Compact representation of high-order
multivariate distributions
- Making omnidirectional predictions

2. We can learn graphical models from datasets with
1,000+ variables https://github.com/fpetitjean/Chordalysis/

3. Chordalysis is the name we gave to the library \ GitHub
that can do everything we have talked about

4. There is still so much work to be done!




Open problems
1. Efficient randomized search

2. Better scores (eg no Dirichlet scoring so far!)

/\\
3. Efficient storing of marginal "data" Mm\

~\( AD BC . BD: CD

AB(, ABD'ACDIBC 1) '

....... N\

ABCD

4. Efficient data structures for counting
-3 ON |large datasets, 99% of the CPU is used for counting

5. Learning out of core '




Your community needs

Open problems (2) ou!

>

# Many problems are low-hanging
¥ fruit; you just need to pick them!




We hope that you enjoyed our tutorial on ...

Scalable learning of graphical models
Francois Petitjean and Geoff Webb
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