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Abstract

Objective. More than half a million surgeries are performed every day worldwide, which makes surgery one of the most
important component of global health care. In this context, the objective of this paper is to introduce a new method for
the prediction of the possible next task that a surgeon is going to perform during surgery.
Material and Method. We formulate the problem as finding the optimal registration of a partial sequence to a
complete reference sequence of surgical activities. We propose an efficient algorithm to find the optimal partial alignment
and a prediction system using maximum a posteriori probability estimation and filtering. We also introduce a weighting
scheme allowing to improve the predictions by taking into account the relative similarity between the current surgery
and a set of pre-recorded surgeries.
Results. Our method is evaluated on two types of neurosurgical procedures: lumbar disc herniation removal and
anterior cervical discectomy. Results show that our method outperformed the state of the art by predicting the next
task that the surgeon will perform with 95% accuracy.
Conclusions. This work shows that, even from the low-level description of surgeries and without other sources of
information, it is often possible to predict the next surgical task when the conditions are consistent with the previously
recorded surgeries. We also showed that our method is able to assess when there is actually a large divergence between
the predictions and decide that it is not reasonable to make a prediction.
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1. Introduction

In the USA alone, 1,000 new surgeries will have started
within the next 10 minutes. This highlights how central
surgeries have become for global health care. To support
and assist surgical teams, Operating Rooms (ORs) have5

undergone tremendous changes. One of the targeted goals
is the development of context-aware systems [1] that con-
tinuously monitor the activities performed in the ORs in
order to provide an accurate and reliable support. The key
challenge in developing these new methods is to process the10

data coming from sensors and real-time detection systems,
in order to provide useful information and support deci-
sion making. This is extremely challenging because OR
environments are very diverse, surgical interventions are
very variable with specific patients, and different surgeons15

might have different levels of expertise. The richness and
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complexity of the data that is collected calls for new ar-
tificial intelligence methods [2] to support pre-, peri- and
post-surgery (before, during and after). In this context,
predictive data mining techniques [3] have long proven to20

be extremely relevant.
The field of Surgical Process Modeling (SPM) [4] tar-

gets the development of new methods that leverage from
OR activities monitoring. In this field, several methods
have already been proposed to automatically detect surgi-25

cal activities. These methods rely either on manual anno-
tations by an observer [5, 6] or on sensors present in the
OR (e.g., camera) [7, 8]. For example, the task performed
by a surgeon can be automatically inferred by combining
RFID chips on instruments (for identification) with ac-30

celerometers [9].
With the richness of the data comes the difficulty of

analysing it, because of its complexity. For example, two
surgeons performing the same surgery on the same pa-
tient might exhibit a very different course of specific ac-35

tions, while being surgically very similar: they might use
the same technique, have the same patient outcome, etc.
However, from the low-level point of view (the sequence of
low-level tasks like cut, suture, etc.), these surgeries will
look very different from each other.40
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Extracting useful high-level knowledge from this low-
level data has been one of the research themes targeted
by the field of SPM [4, 10]: the objective is to under-
stand surgeries to improve the quality of care. The above-
mentioned sensors capture the surgical tasks performed in45

real-time, which opens the door to using artificial intel-
ligence methods to provide real-time information to the
surgical team.

This paper tackles the prediction of possible surgeons’
subsequent actions, using low-level information alone. Pre-50

dicting surgeons’ possible next actions is critical for OR
management: it can be used to provide useful real-time
information to the surgical team (e.g., nurses, anesthetist,
junior surgeon), while allowing the surgeon to focus on
more demanding tasks. For example, the nurses will be55

able to prepare the tool that is going to be used next,
thus ensuring a smooth transition between the activities
of the surgeon. Because predicting the next surgical task
is central, such a prediction system will also be a keystone
to the development of many other systems. For example,60

while the relative importance of the different factors that
cause surgical error is unknown [11], technical skills acqui-
sition are shown to correlate with a reduction of patient
complications [12]. Thus, performing the right action at
the right moment in surgery can greatly influence patient65

outcome. A study on patterns of technical error among
surgical malpractice [13] highlighted that most technical
errors occur in routine operations with experienced sur-
geons. One of the recommendation of the study is to focus
surgical safety research on improving decision-making and70

performance in routine operations. This is why working
on systems helping the surgeon to take action-oriented de-
cisions is critical in the OR.

The data captured in the OR have a specific granu-
larity level. A granularity level is defined as the level of75

abstraction at which the surgical procedure is described.
MacKenzie et al. [14] were the first to propose a model
of the surgical procedure that consists of different levels of
granularity: the procedure, the step, the substep, the task,
the subtask and the motion. Later, Lalys and Jannin [4]80

introduced a terminology consisting of phases defined as
the major types of events occurring during surgery. Each
phase is composed of several steps. A step is considered to
be a sequence of activities used to achieve a surgical ob-
jective. The data used in this paper captures the activity85

of both hands for three different elements: used instru-
ment, performed action and targeted anatomical structure
[15]. Learning to predict the next activity of the surgeon
from such low-level information is extremely challenging,
because the next surgical action depends upon high-level90

information (such as phase of the surgery, technique used,
patient-specific information, so-far reaction of the patient
to the surgery, etc.), while a surgery is represented by a
series of actions like “cut the skin with a scalpel”.

Intuitively, our approach matches the on-going surgery95

to every surgery of a reference set of surgeries, and uses the
next actions that have been performed in the reference set

of surgeries to draw a prediction about the next action that
will be performed in the current surgery. Our proposed
approach includes the three following features:100

1. Optimal registration of a partial surgery: We
propose a new method to optimally register the on-
going surgery (partial surgery) to any complete pre-
recorded surgery. Our approach is based on the Dy-
namic Time Warping similarity measure [16], which105

is consistent with surgical processes [5].
2. Voting for high-confidence prediction: Using

the optimally registered reference set of surgeries,
we use voting to draw a high-confidence prediction
about the next action that is going to be performed110

by the surgeon.
3. Detecting when to predict with high-confidence:

Using the agreement rate among multiple predictors,
we are able to detect when to perform a prediction
and when it is not possible to draw an accurate pre-115

diction.
4. Weighting the prediction according to sequence

similarity: Using the relative similarity between the
on-going surgery and the set of pre-recorded surgery
as weights, we are able to improve the prediction ac-120

curacy by giving more importance to similar surgical
behaviors.

Our framework was assessed using two clinical datasets
of lumbar disc herniation surgeries (LDH) and anterior cer-
vical disectomy surgeries (ACD). The first dataset contains125

24 LDH surgeries performed by multiple surgeons and was
recorded at the Neurosurgery Department of a first site,
named site A. The second dataset contains 18 ACD surg-
eries and was recorded at the Neurosurgery Department
of a second site, named site B. We show that our method130

outperformed the state of the art on both datasets by pro-
viding a prediction with a 95% accuracy more than 85%
of the times.

This article is an extended version of the article that
was presented at the 15th Conference on Artificial Intelli-135

gence in Medicine in Europe [17]. In this extended version,
we have improved the time complexity of the main algo-
rithm from Θ(l ·k) to O(l ·k) and improved our methodol-
ogy with a new weighting technique for the predictions.
We have also extended the validation of our work, by140

studying and comparing our method on a second clini-
cal dataset. This paper is organized as follows. Section 2
introduces the related work in both surgical process mod-
eling and prediction systems in health care and surgery. In
Section 3, we present our method for high-confidence pre-145

diction of the next surgical activity that is going to be per-
formed. In Section 4, we present experiments conducted to
demonstrate the quality and performance of our approach
compared to the state of the art. Finally, we conclude this
work and describe future research in Section 5.150
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2. Related work

In this section, we briefly introduce the existing meth-
ods to record and recognize surgical activities (section 2.1),
initial required step in our application. We then present
some examples of prediction systems in health care and155

for surgery application (section 2.2).

2.1. Automatic recording of surgical activities
In the field of Surgical Process Modeling (SPM) [4],

several methods have already been proposed to automat-
ically detect surgical activities. These methods generally160

rely either on manual annotations by an observer [18, 6, 5]
or on sensors present in the OR (e.g., camera, motion de-
tector, etc.) [19, 7, 8]. The data recorded by an observer
are generally more accurate but are tedious to acquire. On
the other hand, data recorded automatically using sensors165

scale up easily but are more prone to errors in the detec-
tion. In the following, we review principal efforts in de-
veloping methods for the automatic detection of surgeons
activities.

Meissner et al. [9] showed recently that the tasks per-170

formed by a surgeon can be automatically inferred by com-
bining RFID chips on instruments (for identification) with
accelerometers. In this system, a hierarchical recognition
model was used to detect instrument recognition and to in-
fer the performed surgical action. Hidden Markov models175

(HMM) were then used to generate probability distribu-
tions over activities. Padoy et al. [19] also used HMM
to combine low-level signals recorded in the OR. These
low-level informations were combined with high-level in-
formation such as predefined phases to detect actions and180

to trigger events. Similarly, Bouarfa et al. [20] also used
HMM with a pre-processing on the input sensor data in
order to improve the detection of high-level surgical tasks.

Automatic detection of surgical activities can also be
performed from videos. For example, Lalys et al. [21]185

proposed a framework for the automatic recognition of
high-level surgical tasks using microscope videos analysis.
The system was applied to cataract surgeries and combines
computer vision techniques with time series analysis. SVM
classifier was also considered by Lalys et al. [7] to detect190

phases and low-level surgical tasks using cameras in pitu-
itary surgery.

Detecting the high-level surgical phases has also re-
ceived some interest, as they provide a useful information
about the current stage of the surgery, which could in turn195

be used to refine other models. For example, Bardram et
al. [22] proposed a system using embedded and body-worn
sensors data to train a decision tree in order to predict
surgical phases. They studied sensor significance in or-
der to identity the most important features for surgical200

phase prediction. More recently, Stauder et al. [23] used
Random Forest (i.e., a combination of decision trees) to
predict surgical phases from sensors measurement.

Surgical robots represent a new source of data that is
under study to detect the activities of surgeons. In this205

case, the movement of the robots, like the trajectories
of the instruments, are used to infer the current activ-
ity of the surgeon. Significant amount of work has been
devoted to the segmentation of surgical tasks into more
detailed gestures [24, 25]. For example, Despinoy et al.210

[26] proposed a system to segment kinematic data from
robotic training sessions. The goal there is to decompose
the stream of kinematic data coming from a robot record-
ing into individual gestures. The system is then used for
training purposes. Note that phases and surgical activities215

are not the only interesting information to analyze. For
example, Franke et al. [8] proposed a system to predict
intervention time from low-level surgical activities.

All the above-mentioned sensors capture the surgical
tasks performed in real-time, which opens the door to us-220

ing artificial intelligence methods to provide real-time in-
formation to the surgical team. In this paper, we proposed
to go beyond theses detection systems and we assume that
the activities of the surgeons are detected. In this context,
we address the problem of predicting the activities that the225

surgeon is going to perform in the future. Prediction sys-
tems play a crucial role in healthcare as presented in the
following section.

2.2. Prediction systems in healthcare and surgery
Learning to predict the future from past observations230

is one of the key components that make it possible to bring
value to the massive data stores that have been collected in
medicine. For example, the system proposed by Liu et al.
[27] has already proven its usefulness to predict patient in-
formation (e.g. blood count panel) from patient electronic235

health records. This system uses a hierarchical dynamical
system and two modeling approaches: linear dynamical
systems and gaussian processes to support predictive in-
ferences. Huang et al. [28] also developed a predictive sys-
tem in order to predict variation in clinical processes. They240

construct an appropriateness measure model based on his-
torical clinical cases to predict variations in future cases of
clinical processes. Based on a set of clinical cases extracted
from Electronic Patient Records (EPRs) and a set of medi-
cal interventions, the system is able to predict if a variation245

is likely to happen in a specific clinical case. More recently,
Bermejo et al. [29] proposed a system to predict the out-
put of questionnaires used to measure the level of anxiety
or depression in caregivers of schizophrenia patients. The
goal of this prediction system is to anticipate an appropri-250

ate treatment or advice for the family caregivers from Pri-
mary Care consultations. In the context of surgery, Franke
et al. [8] proposed a system for intervention time predic-
tion from surgical low-level tasks. A surgical process model
optimized for time prediction was designed together with255

a prediction algorithm. The predictions were used to sup-
port intervention scheduling and resource management. In
all these applications, the performed predictions are used
by medical teams to improve the quality and the efficiency
of healthcare. Process Modeling was also recently consid-260

ered to analyze surgical workflows. For example, Neumann
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et al. [30] studied workflow modeling languages that could
be suitable to model surgical processes. This kind of mod-
eling would make it possible to leverage recent research
advances in this field, such as developing prediction sys-265

tems using business process models [31]. Sequence analysis
has also been investigated for predicting information from
surgical datasets. For example, Forestier et al. [5] pro-
posed a system based on Dynamic Time Warping (DTW)
that can predict the location and the level of expertise270

of a surgeon from recordings of surgical activities. DTW
was also investigated to identify the variability of surgical
procedures [10]. In the present work, DTW is compared
to uniform scaling [32] which is based the Euclidean ap-
proach. Uniform scaling performs a linear transformation275

that stretches or contracts sequences uniformly over the
sequence (resulting in sequences of equal lengths).

3. High-confidence prediction of the next surgical
activity

We detail our approach in this section. We start by280

presenting our method for optimal sub-sequence match-
ing in Section 3.1. In Section 3.2, we then show how to
construct a discriminative model of the to-be-performed
surgical actions; we also detail how to decide upon the sit-
uations in which we believe that uncertainty is too high to285

draw a high-confidence prediction.

3.1. Optimal sub-sequence matching
Let S = {S1, · · · , SN} be the reference set of N se-

quences (surgeries), S = 〈s1, · · · , sl〉 be one sequence of
this set (a complete surgery), and S? = 〈s?1, · · · , s?k〉 be a290

partial sequence (the ongoing surgery). Let us denote S1,l′

a sub-sequence 〈s1, · · · , sl′〉 of S. Our objective is to find
the sub-sequence S′ = S1,l′ so that the cost of optimally
registering the partial sequence S? onto the sub-sequence
S′ of the reference sequence S is minimal.295

Finding the cost of an optimal registration of one se-
quence onto another has been studied by the literature.
The Dynamic Time Warping (DTW) similarity measure
[16] makes it possible to find the optimal alignment of two
sequences (and thus register them) in Θ(l1 · l2) operations300

(with l1 and l2 the respective lengths of the realigned se-
quences), with regard to some scoring function. The con-
sistency of this measure has been demonstrated for surgical
processes in [5, 6] and is often used in medical applications
[33].305

In this section, we introduce a new objective function
for finding the sub-sequence S′ that best matches S?, and
introduce a new algorithm, based on DTW, that can find
S′ in O(k · l) operations only (where k is the length of the
prefix sequence to be match against another full sequence310

of length l).

Full matching Partial matching

position to find

... ...

available

on-going

1 1

11

l l' l

k k

Figure 1: Illustration of the difference between a full (left) and partial
(right) matching.

3.1.1. Sequence of surgical activities
S = 〈s1, · · · , sl〉 is a sequence of surgical activities si

represented by three elements: an action, an anatomical
structure and an instrument, e.g., (cut, skin, scalpel). In315

the following, we use the term activity to refer to these
three elements. To be able to compare and align two se-
quences, it is mandatory to have a way to compare two
single surgical activities. The simplest approach uses a bi-
nary distance which equals zero if two activities are identi-320

cal, and at least one of their elements is different. However,
this is not flexible as cutting the skin with a scalpel or with
a surgical knife would be considered as doing two different
activities. Consequently, we designed a specific metric that
takes into account each element separately. In this paper,325

as we focus on predicting the activities of the right hand,
we weighted each element of each activities by 1/3 (action,
anatomical structure, instrument). It makes it possible to
have a gradual evaluation of the similarity between two
surgical activities, such as when the surgeon is targeting330

the same structure with two different instruments. More
advanced metric can be designed if both hands are used
or if the use of the microscope is considered [6].

3.1.2. Objective function
Our goal is to find the matching point l′ in S that

minimizes the optimal alignment between S? and the sub-
sequence S1,l′ :

match(S?, S) = arg min
16l′6l

DTW(S?, S1,l′) (1)

Figure 1 presents the intuition about our objective func-335

tion, compared to DTW’s one.
Note that compared to other existing alignment tech-

nique like Smith-Waterman [34] there is no additive penalty
for duplicating or skipping elements in DTW. We chose
DTW (and its ability to sometime stretch subsequences)340

as we wanted to partially reduce the importance of actions’
durations, but not to the point where we would only con-
sider sequencing. Note also that the first element of both
sequences have to be part of the resulting alignment, while
it is not mandatory in Smith-Waterman. Figure 2 presents345

the trend of this objective function versus the value taken
by l′ on an example.

3.1.3. Efficient algorithm
An exhaustive search among all the possible match-

ing points for l′ will take Θ( l·(l+1)
2 · k) = Θ(l2 · k) oper-350
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Figure 2: Illustration of the matchPoint resulting of the partial
matching.

ations. Such a cubic complexity with the length of the
matched sequences is incompatible with real-time match-
ing, because a typical surgical procedure will often have
more than 10,000 elements.

We now show how to modify the Dynamic Time Warp-355

ing (DTW) algorithm to obtain an exact solution in O(l·k)
operations without sacrificing the soundness of the process.
There are three ideas in this algorithm:

1. Noticing that for all l′, DTW (S?, S1,l′) can be com-
puted directly from the warping matrix constructed360

from DTW (S?, S), by looking at the last column of
each line of the matrix.

2. Remembering the smallest value of this last column.
3. Early abandoning the computation of the warping

matrix if all values on one line are greater thanDTW (S?, S1,l′)365

for the best l′ so far.

Put together, the two first elements make it possible to
take the complexity from Θ(l2 · k) to Θ(l · k), while the
last element takes it to O(l · k). Note that with 10,000
elements, the difference in the complexity corresponds to370

an algorithm running more than 4 orders of magnitude
faster than the naive solution. Our solution is presented
in Algorithm 1.

The algorithm combines two main elements. First,
we remember the score of DTW between each prefix of375

S?; this is done using the last else if statement (line
14). Second, we make sure that there is a possibility
for DTW (S1,l2 , S

?) to be lower than DTW (S1,l′ , S
?) with

S1,l′ be the best prefix of S found so far (and l′ < l2).
We then use the fact that the value of m[k, l′] for any l′ is380

greater than at least one cell in m[_, l′−1]. It follows that
at least one cell in the previous column has to be smaller
than the current best alignment (for which the score is
m[k, l′]). We can then stop if this condition is not met.

Note that although this algorithm can be further opti-385

mized depending on δ (i.e., the distance function between
elements of the sequences), we chose here to give the algo-
rithm for the general case. Furthermore, this adaptation
of the algorithm did no alter the properties of optimality
of DTW.390

Algorithm 1 Optimal sub-sequence matching
Require: S? = 〈s?1, · · · , s?k〉
Require: S = 〈s1, · · · , sl〉
Let δ be a similarity between the elements of the se-

quences
Let m[k, l] be a matrix storing partial costs
Let l′ ← 1 be the matching point to find
1: m[1, 1]← δ(s?1, s1)
2: for i← 2 to k do {m[i, 1]← m[i− 1, 1] + δ(s?i , s1)}
3: for j ← 2 to l do {m[1, j]← m[1, j − 1] + δ(s?1, sj)}
4: for j ← 2 to l do
5: continue← false
6: for i← 2 to k do
7: m[i, j] ← δ(s?i , sj) + min(m[i − 1, j],m[i, j −

1],m[i− 1, j − 1])
8: if not(continue) ∧m[i, j] < m[k, l′] then
9: continue← true
10: end if
11: end for
12: if not(continue) then
13: return l′

14: else if m[k, j] < m[k, l′]
15: l′ ← j
16: end if
17: end for
18: return l′

3.2. A voting approach to draw high-confidence predictions
Our method uses the proposed optimal sub-sequence

matching to draw predictions about the next surgical ac-
tivity that will be performed. We will use the optimal
sub-sequence matching from the on-going surgery S? to
every sequence Si of S. We can then use this informa-
tion to draw a probability distribution p̂next over the next
possible state of the current surgery. More formally, the
maximum likelihood estimate p̂next for the next activity to
be s given the previous activities S? is:

p̂next(s|S?) = |{S(match(S?, S) + 1) = s}S∈S|
|S|

(2)

Finally, we draw a prediction from the maximum a pos-
teriori estimate of p̂next using a majority vote [35], i.e.,
select s for which p̂next(s|S?) > 0.5. We consider that if
more than half of the predicted actions are similar, the sys-395

tem should perform a prediction. The goal of the majority
vote is to perform a prediction only when a certain level
of confidence is reached. In order to ensure and confer
high-confidence to the system, we do not draw a predic-
tion if no s obtains a majority or in case of ties. Note400

that p̂next(s|S?) can be seen as an agreement rate on the
prediction: a high value indicates an important agreement
amongst the recorded surgeries about the next action that
is going to be performed and conversely. The threshold
on the agreement rate (0.5 in this paper) can be tuned405

according to need for a system performing very accurate
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predictions but in limited number or a large number of pre-
dictions with an increased probability of errors. We have
developed a web application 1 to allow the reader to try
this prediction system easily. An open-source standalone410

implementation of the method is accessible at the same
URL.

3.3. Weighting the predictions
Depending on the number of available recorded surg-

eries (i.e., the size of S), the number of predictions to com-415

bine for each action can be important. In this case, not all
of the surgeries previously recorded will share a significant
amount of common features with the ongoing surgery (S).
Additionally, as we target real time prediction, our sys-
tem has to stay highly efficient regardless of the number420

of surgeries in S. Consequently, it is desirable to have a
way to select the surgery from S and not use all of them
for the prediction. For example, if we have 3 surgery in
our set and the results of the prediction is action A for
the first one and action B for the two others, the system425

will predict action B, as it has the majority. However, if
we take into account the similarity between the ongoing
surgery and the set of surgeries, it might be more accurate
to predict A if the first surgery is highly similar to the
ongoing surgery while the two others are far from to the430

ongoing surgery.
To cope with these issues, we propose to weigh the

predictions provided by each partial alignment. The pre-
diction scheme proposed in Equation (2) gives the same
importance to each prediction. We propose to include an
additional term to balance the influence of each predic-
tion. Intuitively, we want to give more importance to the
predictions provided by sequences which are highly simi-
lar to the ongoing surgery. To evaluate this similarity, we
propose to rely on the DTW score given by the partial
alignment performed by Algorithm 1. Indeed, the ma-
trix m contains the minimal cost of the partial alignment
along with the matchPoint. Thus, the quality of the par-
tial alignment can be evaluated using this score. Using
this process, we ensure that if the activities performed so
far in the ongoing surgery are highly similar to the activi-
ties of a recorded surgery s, the prediction coming from s
will have an important weight:

p̂next(s|S?) ∝
∑
S∈S

1S(match(S?,S)+1)=s·e−λ·DTW (S?,S1,match(S?,S))

(3)
Where S1,match(S?,S) = 〈S1, · · · , Smatch(S?,S)〉 is the sub-
sequence of S up to the matching point (included) and
1S(match(S?,S)+1)=s is an indicator function that takes value
one when its subscripted condition is true and zero other-435

wise. We do not detail the normalization factor for read-
ability. The λ parameter is used to control the importance
given to the score in combining the results. A high λ value

1http://germain-forestier.info/src/aiim2017/

will give more importance to highly similar sequences. In
the experiment, λ was set to 1 as the lengths of the se-440

quences were limited. We then normalize the weight by
dividing the sum for each next activity by the total sum
for all next possible activities. As proposed with the ma-
jority voting scheme, a threshold can be used to perform a
prediction only when a high confidence is reached. In the445

following, we keep the threshold of 0.5.

4. Experiments

4.1. Clinical data
We evaluated our framework on two datasets composed

of two types of surgical procedures: Lumbar Disc Herni-450

ation (LDH) surgery and Anterior Cervical Discectomy
(ACD) surgery. Figure 3 presents an extract of the LDH
surgeries and Figure 4 an extract of the ACD surgeries.
The legends illustrate the most common actions in the re-
spective dataset. The white spaces correspond to times455

when the surgeon was not performing any action.
The LDH dataset is composed of 24 lumbar disc her-

niation surgeries recorded at the Neurosurgery Depart-
ment of site A. Surgeries contain on average 680 actions.
For this surgery, the list of actions is: cut, coagulate,460

hold, dissect, install, remove, irrigate, sew, swab and drill.
The list of anatomical structures is: skin, fascia, mus-
cle, vertebra, ligament, duramater, nerveroot and disc.
And the list of surgical instruments is: scalpel, scissors,
dissectors, rongeurs, hooks, high-speed drill, suction tube,465

needle-holders, saline solution, retractors and forceps. As
all triples are not present (some triples of action, instru-
ment, anatomical structure are irrelevant), our dataset
contains only 108 different activities.

The surgeries involved 10 male and 14 female patients,470

with a median age of 52 years. These were exclusively pa-
tients with newly diagnosed disc hernia, no patient had
undergone previous lumbar spine surgery which could in-
crease surgical difficulties due to fibrosis. These lumbar
disc surgeries are divided into three main steps: (1) ap-475

proach of the disc, (2) discectomy and (3) closure. The
herniated disc was approached via a posterior intermyola-
mar route. The patients were operated on by five junior
and five senior surgeons. Senior surgeons have performed
at least a hundred removals of lumbar disc herniation. All480

the junior surgeons have passed more than two years of
their residency program but have only performed a few
removals of lumbar disc herniation. We focused on the
closure phase, because it allowed us to ensure that the
main surgeon was the one operating (for a junior surgery,485

his or her senior sometimes takes over the surgery). We
only considered the recording of the right hand which is
the most active body part used to perform the most im-
portant activities.

The ACD dataset is composed of 18 anterior cervi-490

cal discectomy surgeries recorded at Neurosurgery Depart-
ment of site B. Surgeries contain on average 511 actions.
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Figure 3: An extract of the first dataset of 24 LDH surgeries used for the experiments and the legend for the six most frequent actions.

For this surgery, the list of actions is: cut, swab, sew, coag-
ulate, install, dissect, irrigate, drill, remove and hold. The
list of anatomical structures is: muscle, vertebra, skin, fas-495

cia, disc and ligament. And the list of surgical instruments
is: scalpel, scissors, dissectors, rongeurs, hooks, high-speed
drill, suction tube, needle-holders, saline solution, retrac-
tors, curettes, bonewax, drainage, drape, fluoroscopy and
forceps. The dataset contains 82 different activities. Dur-500

ing this procedure, a cervical disc can be removed through
an anterior approach. This means that surgery was done
through the front of the neck as opposed to the back of
the neck. A 1-level ACD surgical procedure can be de-
composed into four major phases, whereas a fifth one may505

be necessary. These four phases are: the approach, the
discectomy, the arthrodesis, and the closure phases. An
additional phase of hemostasis may be mandatory in cer-
tain cases. The patients were operated on by two expert
and two intermediate surgeons (refereed as junior in the510

following). As for the LDH dataset, we also focused on the
closure phase and the right hand activities.

While it is impossible that this limited dataset could
represent all types of LDH and ACD surgeries, the sur-
geons involved in this study indicated that these interven-515

tions contain typical surgical behavior for these types of
surgeries.

4.2. Methodology
For both datasets, we compared three configurations:

using procedures performed by the senior only, by the ju-520

nior only and using all surgeries. Our aim was to observe
the influence of the available surgeries (training data) on
the quality of the predictions that were drawn. A leave-
one-out cross-validation approach was used for each config-
uration: we selected one surgery out of the set of surgeries,525

and used it as the on-going intervention (this surgery was
then removed from the set of reference surgeries). The
left-out surgery was used to test our predictions, as if it
was progressively discovered. Predictions were made every
5% of the progression of the intervention. Note that de-530

pending of the total duration of the intervention, the 5%
can represent different durations. This choice has been
made to perform the same number of predictions, regard-
less of the total duration of the intervention. We could
then compare every prediction with the actual activity of535

the surgery. Every surgery was in turn considered as the
on-going intervention.

We evaluated our system using the precision P (i.e.,
number of good predictions / total number of predictions)
and the recall R (i.e., number of predictions / total num-540

ber of expected predictions). We also used the F-measure
F (harmonic mean between prediction and recall) to pro-
vide an overall evaluation. We compared the results of
our method to the ones of the Euclidean state-of-the-art
method [32]. We used the exact same process, but re-545

placed the optimal sub-sequence matching with uniform
scaling [32]. Uniform scaling performs a linear transfor-
mation that linearly stretches or contracts sequences uni-
formly over the whole sequence. We decided to use uniform
scaling as a competitor for our approach, because the Eu-550

clidean distance is often used as the competitor of DTW
to motivate the need for using a time warping approach.

4.3. Results on Lumbar Disc Herniation (LDH) dataset
Figure 5 presents the general results for the Lumbar

Disc Herniation (LDH) dataset on the three configura-555

tions (Junior+Senior, Junior, Senior). We compared both
methods in terms of F-measure. We can see that our time-
warping approach outperformed the state-of-the-art Eu-
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Figure 4: An extract of the second dataset of 18 ACD surgeries used for the experiments and the legend for the six most frequent actions.
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Figure 5: Results on the three configurations (Junior+Senior, Junior,
Senior) for the two methods (DTW in white, Euclidean in gray) for
the LDH dataset.

clidean approach, regardless of the considered configura-
tion. The compact dispersion of the results for the senior560

case (as compared to the junior case) suggests that seniors
have a more homogeneous behavior than junior surgeons,
which is consistent with previous studies comparing ju-
nior and senior practices [5, 36, 37]. This trend was also
observed in previous works using sequence of surgical ac-565

tivities [10, 5, 6]. This result also illustrates the influence
of the set of available recordings in the quality of the pre-
diction. Even though mixing all the surgeries together
provided very good results, the best results were obtained
for senior surgeons, whose surgical practice is usually more570

standardized and homogeneous. This supports our intu-
ition that the more dedicated the training data is to the
operating surgeon, the more accurate the predictions will
be.

Table 1 details the prediction results for each of the 24575

surgeries (using the 23 remaining surgeries as the training
set). A sparkline (e.g., ) presents, for each
sequence, the evolution of the agreement rate among the

Table 1: Detailed results for every surgery of the LDH dataset; re-
sults with F > .9 are shown in boldface.

Junior
Surg. P R F Agreement

S1 1.000 0.944 0.971
S2 0.938 0.889 0.913
S3 0.846 0.722 0.779
S4 1.000 0.944 0.971
S5 0.941 0.944 0.943
S6 1.000 0.944 0.971
S7 0.882 0.944 0.912
S8 0.941 0.944 0.943
S9 0.875 0.889 0.882
S10 1.000 0.833 0.909
S11 1.000 1.000 1.000
S12 0.929 0.778 0.847

Senior
Surg. P R F Agreement

S13 1.000 0.889 0.941
S14 0.941 0.944 0.943
S15 1.000 0.833 0.909
S16 1.000 0.722 0.839
S17 1.000 0.833 0.900
S18 1.000 0.889 0.941
S19 1.000 0.944 0.971
S20 0.933 0.833 0.881
S21 1.000 0.944 0.971
S22 0.941 0.944 0.943
S23 1.000 1.000 1.000
S24 0.75 0.889 0.814

predictions over the course of the surgery. The gray rect-
angle represents the interval (0.5, 1] for which a majority580

is obtained. The blue dots represent the cases where our
system did not provide a prediction (because no majority
was obtained), while the red dots represent the inaccurate
predictions. All other elements on the lines correspond to
cases where our method predicted the next task accurately.585

The precision of our system is very high: in more than half
of the surgeries, no mistake was every committed. Over-
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Figure 6: Results on the three configurations (Junior+Senior, Junior,
Senior) for the two methods (DTW in white, Euclidean in gray) for
the ACD dataset.

all, our systems exhibits an average precision of 95%: our
predictions do not eventuate 5% of the times only.

Moreover, our system provides a prediction 89% of the590

times (recall). This means that for the vast majority of
cases, an agreement can be reached and a decision made.
Furthermore, the consistency of our voting procedure is
confirmed: for all the cases where the MAP (maximum
a posteriori) estimate was below the majority threshold,595

and for which we thus did not provide a prediction (i.e.,
blue dots in Table 1 – Agreement column), the MAP esti-
mate was actually wrong. This confirms the relevance of
our approach, by showing that we actually do not pro-
vide a prediction when no reliable choice can be made600

from the training set. This corresponds to the case where
not enough similarity can be found between the on-going
surgery and the reference set, which can be the case if
specific activities are required during surgery. The highest
number of errors were committed in S24 with a sequence of605

four wrong predictions in a row. This corresponds to the
green activity in Figure 3, where the surgeon installed the
retractors on the skin without stopping, while all the other
surgeries exhibited several pauses. Finally, every predic-
tion was made in less than 200ms, which is compatible610

with real-time prediction in the OR.

4.4. Results on Anterior Cervical Discectomy (ACD) dataset
Figure 6 presents the general results for the Anterior

Cervical Discectomy (ACD) dataset on the three config-
urations (Junior+Senior, Junior, Senior). We compared615

both methods in terms of F-measure. In this second dataset,
our approach also outperformed the state-of-the-art Eu-
clidean approach, regardless of the considered configura-
tion. The Euclidean approach provided particularly poor
results for the junior case. This can be explained by the620

limited amount of data available for this configuration, as
only six sequences were available. The result is that it
makes it difficult to find highly similar sequences in the
reference set. Conversely, our method is able to operate
non-linear distortions of the time axis, and hence to absorb625

some time variations; we posit that this help reduce the
variance of the error for our system. Our approach, even
with this limited amount of data managed to provide very
good results with a precision of 87%. Similarly to the re-

Table 2: Detailed results for every surgery of the ACD dataset; re-
sults with F > .9 are shown in boldface.

Junior
Surg. P R F Agreement

S1 1.000 0,778 0,870
S2 0,846 0,722 0,779
S3 0,900 0,556 0,687
S4 0,824 0,944 0,880
S5 1.000 0,722 0,839
S6 1.000 0,500 0,667

Senior
Surg. P R F Agreement

S7 1.000 0,556 0,714
S8 1.000 0,556 0,714
S9 1.000 0,833 0,909
S10 1.000 0,778 0,875
S11 1.000 0,778 0,875
S12 0,867 0,833 0,850
S13 1.000 0,667 0,800
S14 1.000 0,667 0,800
S15 1.000 0,611 0,759
S16 0,941 0,944 0,943
S17 1.000 0,778 0,875
S18 1.000 0,889 0,941

sults obtained with the LHD dataset, the best results were630

obtained for the senior case, where behaviours are more
homogeneous. When combining both junior and senior
surgeries, the results of the Euclidean approach increased
to a precision of 77% but our method still performed the
best results with the precision reaching 93%.635

Table 2 details the prediction results for every one of
the 18 surgeries (using the 17 remaining surgeries as the
training set). The precision of our system is very high:
in 13 out of 18 surgeries, all of our predictions were cor-
rect. The overall precision is of 93% for this dataset. For640

example, there are only two senior surgeries S14 and S15
that used the activity “install, vertebra, fluoroscopy” (olive
green in Figure 4) at the beginning of the phase. This
makes a prediction difficult because we cannot obtain a
majority vote. In this situation, our system did not per-645

form prediction; this can be seen with the series of blue
dots for S14 and S15 in Table 2. Our method is able to
consistently automatically decide when not to providing
a prediction, when it assesses that the current conditions
are too dependent upon the current surgery. One can note650

that we currently consider all actions to be of equivalent
importance in the computation of the accuracy. While it
would be interesting to know if the system is able to pre-
dict the most important actions, the level of importance
of a single action in the context of an entire surgery is still655

very difficult to assess.

4.5. Results with prediction weighting
Note that in the previous experiments, we assumed

that all surgeries were relevant to make the predictions.
This could be an issue for larger datasets because, intu-660

itively, we would like to discard the surgeries that ‘look’
too different to the one being acquired. This is the basis
for our weighting scheme: we construct a model where the
prediction is influenced mostly by its close neighborhood
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(in our metric space). In some sense, this allows us to665

construct a model that is local and specific to the target
sequence. We present below our first results; we believe
that the interest for this method will grow as the size of
the datasets increases.

As presented in Section 3.3, an alternative to major-670

ity voting is the weighting of the prediction according the
DTW score obtained from the partial matching. To eval-
uate this weighting scheme, we performed experiments on
the LDH dataset (the largest available) where we replaced
majority voting by prediction weighting. In this experi-675

ment, the λ parameter (see Equation (2)) was set to 1.
Note that this parameter controls for the size and spread
of the neighborhood that we want to consider as relevant
for the predictions. Table 3 presents the results obtained
on the LDH dataset. For the three configurations, using680

the weight instead of majority voting enabled an increase
of the precision of the predictions. The amount of the in-
crease is limited (between 1 to 2%) but allowed for each
configuration to go beyond 96% of correct predictions. For
the configuration with both junior and senior sequences,685

the recall value is higher when using prediction weights
compared to using majority voting, which indicates that
the prediction are both more precise and that we are able
to predict the next task more often. The high recall val-
ues for the Euclidean method have to be balanced by their690

low precision resulting in lower F-measure for all configu-
rations. These results confirm the relevance of weighting
the predictions according to the similarity between the on-
going surgery and the reference surgeries. Furthermore, we
believe that such technique will be more and more consis-695

tent as the size of the dataset increases, because there will
compulsorily be surgeries that do not resemble the target
one (and which we would then want to discard).

5. Conclusion

This work shows that it is possible to predict the next700

surgical task accurately. Our predictions are drawn from a
low-level description of surgeries, without other source of
information, and assume that the current surgery is consis-
tent with the ones constituting the training set. Our con-
tributions include (1) a definition of the objective function705

for the registration of a partial sequence to a complete ref-
erence sequence, (2) an efficient algorithm, based on DTW,
to optimally minimize the above-mentioned objective func-
tion and (3) a prediction system that combines our optimal
sub-sequence matching with MAP estimation and filter-710

ing. We also showed that our method is able to assess
when the predictions are inconsistent and decide that it
is not reasonable to make a prediction. Finally, we also
introduced a new way for weighting the prediction to take
into account the similarity between the ongoing surgery715

and the reference surgeries. Experiments on two datasets
have shown that our method outperforms the state of the
art and provides a prediction with high accuracy.

The fact that predicting surgical tasks is so central to
the new generation of computer assisted surgery systems720

naturally opens up a number of clinical applications. We
have mentioned in the introduction how this information
can help ensuring a smooth running of the surgical proce-
dure. Another application concerns the training of junior
surgeons, where our system could be integrated in a simu-725

lation environment in order to provide help and feedback
to the junior surgeon [38]. Our system could, on demand,
provide a warning to the surgeon about his or her devia-
tion from the standard practice of his or her colleagues. In
future work, we want to validate this method on a more730

important dataset (> 300 surgeries) and use our recent
work on Dynamic Time Warping [39, 40] to improve the
predictions. Furthermore, one possible extension of our
system would be to use transition probabilities between
surgical actions as a priori knowledge to refine and filter735

the predictions. We will also investigate the use of contex-
tual information, like patient vital signs, in the prediction
method.

Supplementary materials

The source code for the proposed method is available740

at http://germain-forestier.info/src/aiim2017/
(Accessed: January 2017)
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