
Generating synthetic time series to augment sparse datasets

Germain Forestier1,2, François Petitjean2, Hoang Anh Dau3, Geoffrey I. Webb2, Eamonn Keogh3

1 University of Haute-Alsace, Mulhouse, France, germain.forestier@uha.fr
2 Faculty of IT, Monash University, Melbourne, Australia, {francois.petitjean,geoff.webb}@monash.edu

3 Computer Science and Engineering Dpt, University of California, Riverside, USA {hdau001,eamonn}@cs.ucr.edu

In machine learning, data augmentation is the process of
creating synthetic examples in order to augment a dataset used
to learn a model. One motivation for data augmentation is to
reduce the variance of a classifier, thereby reducing error. In this
paper, we propose new data augmentation techniques specifically
designed for time series classification, where the space in which
they are embedded is induced by Dynamic Time Warping (DTW).
The main idea of our approach is to average a set of time series
and use the average time series as a new synthetic example.
The proposed methods rely on an extension of DTW Barycentric
Averaging (DBA), the averaging technique that is specifically
developed for DTW. In this paper, we extend DBA to be able to
calculate a weighted average of time series under DTW. In this
case, instead of each time series contributing equally to the final
average, some can contribute more than others. This extension
allows us to generate an infinite number of new examples from
any set of given time series. To this end, we propose three methods
that choose the weights associated to the time series of the dataset.
We carry out experiments on the 85 datasets of the UCR archive
and demonstrate that our method is particularly useful when
the number of available examples is limited (e.g. 2 to 6 examples
per class) using a 1-NN DTW classifier. Furthermore, we show
that augmenting full datasets is beneficial in most cases, as we
observed an increase of accuracy on 56 datasets, no effect on 7
and a slight decrease on only 22.

I. INTRODUCTION

Machine learning usually benefits from larger training sets.
Small training sets lead to overfitting, while overfitting is pro-
gressively less of a problem as data quantity increases [1], [2].
For many applications, only small training sets are available.
One way to address this problem is to enlarge training sets
by generating synthetic (or artificial) examples. In machine
learning, data augmentation refers to the process of creating
synthetic examples in order to augment a dataset [3] used to
learn a model.

The general idea behind data augmentation is to reduce the
errors of the classifier that are due to variance, i.e. when there
are too few examples to learn accurate parameters for the
model; the classifier is then said to overfit. We can influence
the variance by adding/removing representation bias to the
classifier (see e.g. [4]); adding representation bias typically
reduces variance and conversely. However, in many cases it
can be easier to express our knowledge of the problem (i.e.
the bias) by generating synthetic data than by modifying the
classifier itself. For instance, images containing street numbers
on houses can be slightly rotated without changing what
number they actually are [5]. Voice can be slightly accelerated
or slowed down without modifying the meaning [6]. We can

replace some words in a sentence by a close synonym without
completely altering its meaning [7]. Data augmentation has
also been shown to improve the accuracy of handwriting
recognition systems [8]. Macia et al. [9] also showed that
classic algorithms, including Naive Bayes and Random Tree,
can benefit from data augmentation.

0 20 40 60 80 100 120

Cylinder class of CBF dataset Synthetic Cylinder sample
0 20 40 60 80 100 120

Fig. 1: Example of a generated synthetic series (right) for
Cylinder class of CBF dataset (left) by averaging a set of
time series taken from the class.

Augmentation with synthetic examples has also been used to
address unbalanced classes (i.e. when classes of the training
set do not have the same number of elements). For exam-
ple, Chawla et al. [10] proposed a method named SMOTE
(Synthetic Minority Over-sampling Technique) which creates
synthetic minority class examples to balance the classes. Ex-
periments showed improvement in error-rate for C4.5, RIPPER
and Naive Bayes classifiers.

In recent years, good results in time series classification
have been achieved by the use of Dynamic Time Warp-
ing (DTW) combined with non-parametric classifiers such
as nearest neighbor (NN). However, most of the proposed
methods still require large amounts of labeled training data
to work effectively. Relatively little attention has been paid
to the development of augmentation methods for time series
classification under time warping. For example, Le Guennec et
al. [11] proposed to stretch or shrink randomly selected slices
of a time series in order to create synthetic examples.

In this paper, we present methods for generating a set of
synthetic time series D′ from a given set of time series D.
The addition of the synthetic set D′ to D (D ∪ D′) forms
an augmented dataset. To create the synthetic time series,
we propose to average a set of time series and to use the
averaged time series as a newly created example. To achieve
this goal, we developed a weighted version of the time series
averaging method DBA (DTW Barycenter Averaging) [12],

which makes it possible to create an infinite number of new
time series from a given set of time series by simply varying
the weights. Moreover, we developed three methods to choose
the weights to assign to the series of the dataset, so that the
generated examples closely follow the distribution from which
D is sampled. Figure 1 shows an example of a synthetic time
series generated using our method for the Cylinder class of
the CBF dataset [13].

In previous work, we have formulated the DBA algorithm
and demonstrated that it averages time series consistently
under DTW [12], [14]. We have shown that DBA can be
used to speed up NN-DTW [15], by constructing the most
representative time series of each class and using only those for
training. In this paper, we take an opposite angle. We increase
the size of the training set to improve classification accuracy.
Unlike the previously proposed techniques, our new method
can generate an unlimited number of synthetic time series and
tailor the weights distribution to achieve diversity.

In order to evaluate the effectiveness of the newly created
time series, we used augmented training sets for time series
classification using the 1-NN classifier in conjunction with
DTW. We will present two types of experiments using 85
datasets of the UCR archive [13] to assess our approach The
first part is related to the cold start problem, which appears
when very few examples are available at the outset of learning
a predictive model. We show that in this case creating synthetic
examples using our method is almost always beneficial. In the
second part, we use synthetic time series to double the training
sets size regardless of their original sizes. We show that for
most of the datasets in the UCR repository [13] (56 out of 85),
we increase the accuracy of the 1-NN DTW classifier just by
adding newly created time series to the training set.

II. METHODS

We first define the key terms that we use in this work. For
our problem, each object in the data set is a time series, which
may be of different lengths.

Definition 1: Time Series. A time series T = 〈t1, . . . , tL〉 is
an ordered set of real values where L is the length. A dataset
D = {T1, . . . , TN} is a collection of such time series.

The general intuition behind our approach is to take a set
of time series from the same class in D, calculate a weighted
average T , and use this average as a new synthetic time series
to augment D (i.e. D∪T). Note that an important contribution
of our method is finding the weights so that we nicely follow
the manifold of the data. In our case, the objects are time
series and the measure is DTW, which leads to the following
definition:

Definition 2: Average time series for DTW. Given a set
of time series D = {T1, . . . , TN} in a space E induced by
Dynamic Time Warping, T the average time series is the time
series that minimizes:

argminT ∈ E
N∑
i=1

DTW 2(T , Ti) (1)

In this paper, we use DBA (DTW Barycenter Averaging)
as the method to minimize this function [14]. DBA uses
an expectation-maximization scheme and iteratively refines a
starting average T by:

1) Expectation: Considering T fixed and finding the best
multiple alignment M of the set of sequence D consis-
tently with T (see [16] for more details about multiple
alignments and DTW).

2) Maximization: Now considering M fixed and updating
T as the best average sequence consistent with M .

Although DBA is only deterministic given a fixed starting
average, modifying this starting time series is not sufficient to
create enough diversity in the synthesized dataset. If we look
at the problem in a one dimensional Euclidean space, given
two values, for example 4 and 6, we would like to generate n
additional and different values. If we compute the arithmetic
mean, we only end up with the new value 5. However, if we
weight each input example and use the weighted arithmetic
mean, we can compute infinitely many additional values. In
this case, instead of each of data point contributing equally to
the final average, some data points contribute more than others.
Another issue with using a “uniformly weighted” average is
that it can result in undesirable time series when the data
distribution is not spherical. The generated data should ideally
be located on the manifold of the distribution. Imagine that the
data distribution follows an U-shape, computing the center of
this U will typically construct very unlikely objects.

The remaining questions are: (1) how to compute a weighted
average consistently with dynamic time warping; and (2) how
to decide upon the weights to give to each times series.

A. Weighted average of time series for DTW

DBA [12] is an iterative algorithm which starts by taking
one time series from the set to average (generally the medoid)
and then updating this time series. Calculating the weighted
average simply changes the objective function.

Definition 3: Weighted Average of time series un-
der DTW. Given a weighted set of time series D =
{(T1, w1), . . . , (TN , wn)} in a space E induced by DTW, T
the average time series is the time series that minimizes:

argminT ∈ E
N∑
i=1

wi ·DTW 2(T , Ti) (2)

As we can see in the formula, weighting does not affect
how DTW is computed, which means that it does not change
the mapping that DTW forms between the T and the series
in D. For this reason, the expectation part of DBA is exactly
the same as with the non-weighted version of DBA (see [12],
[14], [15]). The main difference is in the maximization phase,
which we describe in Algorithm 2. We record the sum of
the weights associated to each element of the current average
when mapped to it by DTW. Table I give the pseudocode
of Weighted-DBA. To ensure reproducibility of our work, we
make an implementation of weighted DBA available at [17].

TABLE I: Weighted DBA algorithm.

Algorithm 1: Weighted DBA(D,W ,I)
input : D: the set of sequences to average
input : W : the set of weights
input : I: the number of iterations
T = medoid(D,W) // get the medoid of the set of sequence D
do I times: T = Weighted DBA update(T ,D,W)
return T

Algorithm 2: Weighted DBA update(Tinit,D,W)
input : Tinit: the average sequence to refine (of length L)
input : D: the set of sequences to average
input : W : the set of weights
output: T : the updated mean
T = 〈0, . . . , 0〉 // sequence of length L
sumWeights = [0, . . . , 0] // array of size L
for i = 1→ |D| do

alignment = DTW alignment(Tinit,D(i))
for l = 1→ L do

T (l) = T (l)+ alignment[l] ·W (i)
sumWeights[l] +=W (i) · |alignment[l]|

end
end
for l = 1→ L do

T (l) = T (l)/sumWeights[l]
end

B. Average All (AA)

The first method averages all the input time series to create
a synthetic example. We want to give different weights to all
the time series to create diversity in the synthesized ones.

We first propose to sample the weights vector following
a flat Dirichlet distribution with unit concentration parameter
w ∼ Dir(1). We used a low value for the shape parameter (0.2
in this paper) of the Gamma-distributed random variable used
for the Dirichlet distribution in order to give more weight to
a time series that is then used as the initial object to update
in Weighted DBA algorithm (see Table I).

While the intuition behind this first method is appealing, we
will see that this is often not an ideal solution, because it has
potential to fill up the complete convex hull of the original
data. In the case where the classes form two interlaced U-
shapes, filling the inside part of the ’U’ would lead to inap-
propriate examples. That is why the following two methods
first select a subset of the time series to average.

C. Average Selected (AS)

The intuition behind our second method is to use a subset
of close time series and fill their bounding boxes. Take again
the case of the U-shape, as extremities of the ’U’ are not
close neighbors, we will not fill the inside of the ’U’, thus
following the manifold more consistently. The method starts
by randomly choosing a time series T ∗ from D and giving
it a weight of 0.5. Then, it looks for the 5 nearest neighbors
of T ∗ and picks 2 of the 5 at random (selecting j of the k
nearest neighbors, rather than all of the k nearest neighbors, in
order to create variability). We assign them a 0.15 weight; thus
summing up to 80%. Finally, we assign the remaining 20%

uniformly across the rest of the time series (each receives a
weight of 0.2/N). If only two time series are available, the
nearest neighbor receives a weight of 0.5. For this method,
we also use the fact that we are generating time series in the
neighborhood of T ? and initialize DBA with it.

D. Average Selected with Distance (ASD)

The third method has the same spirit as AS method but it
takes into account the relative distance between the initially
selected time series and its nearest neighbor. The idea is that
if other time series are relatively far from T ∗ and its nearest
neighbor, they should receive a relatively lower weight than
if they were almost as close to T ∗ as its nearest neighbor.
In some sense, we are trying to assess the density of the
distribution in the neighborhood of T ? by using the distance
to its nearest neighbor as a proxy for it.

As for the previous method, we first choose randomly a
time series T ∗ from D and give it a weight of 1. We then
assign its nearest neighbor a weight of 0.5. Next, we define
an exponential decay function that maps a distance (DTW) to
a weight. Our 2 points in this function are sufficient to build
the function:

wi = e
ln(0.5)∗DTW (Ti,T

?)

d?
NN (3)

where d?NN is the distance between T ? and its nearest neigh-
bor. We then use this function and normalize its outputs to
decide upon the weights for all time series in D. Intuitively, we
make T ? the center of gravity of our synthetization and create
a power law around it whose width is decided by how close
the nearest neighbor is. If it is very close, then only elements
that are extremely close to T ? and its nearest neighbor will
influence the generation. If it is far, then many other time
series will. Here again, we initialize DBA with T ?.

E. Visualizing synthetic data

In order to have a spatial interpretation of the synthetic
data generation, it is possible to visualize the result using
Multi-Dimensional Scaling (MDS) [18]. MDS aims at placing
each object in a N-dimensional space such that the between-
object distances are preserved as well as possible. Using
DTW on a set of time series, it is then possible to create
a similarity matrix and to use MDS on it to display the set
into a two dimensional space. As DTW is not a metric, we
used Kruskal’s nonmetric MDS [18], which only uses the rank
order of elements in the dissimilarity matrix instead of the
actual dissimilarities. Figure 2 gives the MDS representation
of the original and synthetic objects on the CBF (a,b) and
Gun Point (c,d) datasets for the AA and ASD methods.
In this example, we created 50 additional synthetic examples
for each of the class of the original training sets using the
Average All (AA) and Average Selected with Distance (ASD)
methods. For the CBF dataset (Figure 2(a)), averaging all the
time series of the classes works well as it fills their convex
hulls. Averaging only selected time series produces similar
results as presented on Figure 2(b) with the ASD method.

Cylinder
Synthetic Cylinder
Bell
Synthetic Bell
Funnel
Synthethic Funnel

(a) CBF dataset with synthetic examples of AA method.

Cylinder
Synthetic Cylinder
Bell
Synthetic Bell
Funnel
Synthethic Funnel

(b) CBF dataset with synthetic examples of ASD method.

Gun
Synthetic Gun
No Gun
Synthetic No Gun

(c) GunPoint dataset with synthetic examples of AA method.

Gun
Synthetic Gun
No Gun
Synthetic No Gun

(d) GunPoint dataset with synthetic examples of ASD method.

Fig. 2: MDS representation of the CBF (a,b) Gun Point (c,d) datasets [13] with synthetic data generated using Average All
(AA) method and Average Selected With Distance (ASD).

However, the result obtained with the Gun Point dataset
(Figure 2(c)) illustrates the problem mentioned with the AA
method when the distribution of the classes is not convex. In
this case, it is more appropriate to use the local distribution
of the class, as does the ASD method on Figure 2(d).

III. EXPERIMENTS

A. Cold start

We want to compare the performance of the different
methods when they only have access to a few instances of
the learning set. To this end, we follow standard practices for
statistical comparison of classifiers [19] and use the average
ranking of each method over all the datasets. This allows
us to assess which algorithm exhibits, on average, the best
classification performance under the given configuration of
available examples and to test if the superiority is statistically
significant.

For each dataset, we simulate the cold start by randomly
selecting a few samples from the training set. We progressively
grow the size of the sub-sampled data from 2 (at least 2 are
needed for our proposed methods) to the full original dataset.
We then apply our algorithms to generate as many synthetic
time series as the size of the sub-sampled data (i.e. we double

TABLE II: Average ranking over 85 UCR datasets of the
synthetic time series generation methods for 2 to 6 examples
available per class.

Algorithm Average rank Rj using k examples per
class to generate k additional synthetic ex-
amples per class
k = 2 k = 3 k = 4 k = 5 k = 6

Original 3,48 3,47 3,45 3,38 3,69
WW [11] 3,10 3,08 3,40 3,42 3,38

AA 3,20 3,16 2,95 3,30 2,84
AS 2,66 2,65 2,81 2,42 2,74

ASD 2,56 2,64 2,38 2,48 2,35

χ2
F 20,04 17,17 24,66 34,59 38,63

Rori - RASD 0.92 0.81 1.06 0.89 1.34

the size of the training set). We then report the error-rate of
each algorithm on each dataset as we grow the size of the
starting dataset. We compare our proposed algorithms with
two other methods. The Original method keeps the original
examples only, i.e. the ones used by our methods to create
synthetic examples. The Windows Warping (WW) method
discussed in [11] involves warping a randomly selected slice
of a time series by speeding it up or down. We follow the

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

Er
ro

r r
at

e

Ori

AA
WW

AS
ASD

Number of available examples per class

(a) synthetic_control

0 5 10 15 20 25 30

0.
15

0.
25

0.
35

0.
45

Er
ro

r r
at

e

Ori
AA

WW

AS
ASD

(c) FISH

Number of available examples per class

2 4 6 8 10 12

0.
00

0.
02

0.
04

0.
06

Er
ro

r r
at

e

Ori
AA

WW
AS

ASD

(b) CBF

Number of available examples per class

Fig. 3: Evolution of the error-rate on (a) synthetic_control, (b) CBF, and (c) FISH datasets for our three methods (AA,
AS, ASD), Window warping (WW) and Original (Ori) with increasing number of available examples.

recommendations given in [11] and use warping ratios equal
to either 1

2 or 2 on slices representing 10% of time series’s
length. The methods AA (Average All), AS (Average Selected)
and ASD (Average Selected with Distance) correspond to the
methods proposed in the previous sections.

Then, for every dataset, we rank the methods by error-rates:
rank 1 is assigned to the method with the lowest error; rank 5
is assigned to the method with the highest1. We then compute
the average rank for every method. Let rji be the rank of the
jth of A algorithms on the ith of Nd datasets. The average
rank for algorithm j is computed as Rj = 1

Nd
rij . This gives

a direct general assessment of all the algorithms: the lowest
rank corresponds to the method that, on average, obtains the
best error-rate with the available examples.

Table II shows the average rank of all algorithms over
the datasets of [13]. These results demonstrate that ASD
method outperforms other methods. It is interesting to note
that generating synthetic data is always more effective than
keeping only the original examples (i.e. the average ranking
of the Original method is always the highest). It means that
if only few examples are available, it is beneficial to generate
synthetic examples.

In addition, we test the statistical significance of these
results. We want to assess whether 85 datasets is a large
enough sample to state that this difference in the ranking
is statistically significant. We first perform a Friedman test
[19], in order to assess whether the results are significantly
different. This test is used to evaluate whether there is enough
evidence to confidently state that the different methods are not
performing equally.

χ2
F =

12Nd

A(A+ 1)

∑
j

R2
j −

A(A+ 1)2

4

 (4)

The values are reported in the χ2
F line of Table II. Given

that the Friedman test follows a χ2 distribution with A − 1
degrees of freedom, these results yield a significant difference
among the methods (p < 10−5).

1In case of ties, we assign the average (or fractional) ranking. For example,
if there is one winner, two seconds and a loser [1,2,2,4], then the fractional
ranking will be [1,2.5,2.5,4].

Having rejected the null hypothesis, we can proceed with
a detailed comparison of the methods. Again, we follow
standard practices for classifier comparison [19] and perform
a Nemenyi test to compare pairs of methods. Comparing 5
methods over 85 datasets, [19] shows that, to be statistically
significant (α = 0.05) the difference between the average
rankings has to be greater than:

CD = q0.05.

√
A(A+ 1)

6Nd
= 2.728.

√
30

510
≈ 0.662 (5)

We report the difference between the average rank obtained
by the Original method (no augmentation) and the one ob-
tained by ASD method over the 85 datasets in the last line
of Table II. It shows that the difference is greater than the
critical difference CD, regardless of the number of available
examples. As a result, we can confidently conclude that ASD
is statistically significantly better than Original, and thus that
the use of synthetic examples yields better results than using
only original examples for the cold start problem.

B. When is it beneficial to add synthetic examples?

The previous experiments were conducted for available
examples from 2 to 6 per class. The remaining question is: Is
it still useful to generate synthetic examples when the number
of available examples is larger?

To address this question, we studied the evolution of the
error-rate with increasing number of available examples, un-
til we reached the point of using the entire training set.
Figure 3 presents the evolution of the error-rate for three
datasets (synthetic_control, CBF and FISH) for our
three methods (AA, AS, ASD), Window warping (WW) and
Original (Ori), with increasing numbers of available examples.

When the dataset drawn from a simple distribution and
the classes are homogeneous, the addition of synthetic ex-
amples is clearly beneficial. This observation is true for
the synthetic_control dataset (Figure 3(a)) where it
is always beneficial to add synthetic examples. This dataset
was indeed synthetically generated and we can posit that the
model is easily inferred by our method to successfully create
additional synthetic examples.

For most of the datasets, the differences in error-rate are
substantial when the number of available examples is low; for
example for the CBF datasets in Figure 3(b). The expected
benefit is likely to be correlated with the complexity of the
dataset and how well the available example represents the class
distribution. Furthermore, the quality of the synthetic examples
directly depends on the available original examples. For the
CBF dataset, the ASD method creates beneficial synthetic
examples from the start and it appears that with 6 available ex-
amples per class, all the generative methods managed to create
good synthetic examples, improving the error-rate compared
to using only the original examples. Synthetic examples make
it possible to completely eliminate errors in classification.

However, in some cases, for instance the FISH dataset
(Figure 3(c)), the addition has very slight benefit when the
size of the available sample is small, but at some point, adding
synthetic examples actually increases the error-rate (when 10
examples are available per class in Figure 3(c)). In order to
evaluate whether adding synthetic examples is harmful, we
carried out experiments in which we used the entire training
sets that we augmented.

C. Full training set experiment

In this experiment, we report results where we used the
entire training set as the starting point, and we doubled the
number of time series. We doubled the size of each class
regardless of possible unbalancing in class size. We focus on
ASD method as it provided the best result according to the
experiment of the previous section.

Of the 85 UCR datasets, for 56 the augmented dataset
led to higher accuracy, for 7 they were identical and for
22 the accuracy decreased with the addition of the synthetic
examples. The average increase of accuracy among the 56
dataset was of 3.81% while the average diminution of the
22 datasets was of -1.72%. For four datasets, the increase in
accuracy was higher than 10%, with the highest improvement
for the Phoneme dataset (18.42%). We performed a one-sided
Wilcoxon signed rank test in order to assess the statistical
significance of the error-rate differences. The increase in
accuracy attributed to our proposed data augmentation method
is statistically significant at the 0.001 level.

IV. CONCLUSION

In this paper, we introduced a framework for generating
synthetic time series under Dynamic Time Warping. To this
end, we defined weighted averaging for time series under Dy-
namic Time Warping (Weighted DBA). Using this foundation,
we then created smart methods to choose weights in order to
generate useful synthetic time series by weighted averaging.
Experiments reveal that our methods are useful both when very
few time series are available and even when the full learning
set is used.

In future work, we plan to study how our synthetic example
generation methods could be helpful in conjunction with
other learning methods (e.g. SVM, Deep Networks, etc.). The

genericity of our techniques makes it possible to use them in
conjunction with any existing learner.

ACKNOWLEDGMENTS

This research was supported by the Australian Government
through the Australian Research Council’s Discovery Early
Career Award (DE170100037). This material is based upon
work supported by the Air Force Office of Scientific Re-
search, Asian Office of Aerospace Research and Development
(AOARD) under award number FA2386-16-1-4023.

REFERENCES

[1] D. Brain and G. I. Webb, “On the effect of data set size on bias
and variance in classification learning,” in 4th Australian Knowledge
Acquisition Workshop, 1999, pp. 117–128.

[2] J. Nonnemaker and H. S. Baird, “Using synthetic data safely in classi-
fication,” Proc. SPIE 7247, Document Recognition and Retrieval XVI,,
vol. 7247, 2009.

[3] D. A. Van Dyk and X.-L. Meng, “The art of data augmentation,” Journal
of Computational and Graphical Statistics, 2012.

[4] N. A. Zaidi, G. I. Webb, M. J. Carman, F. Petitjean, and J. Cerquides,
“ALRn: accelerated higher-order logistic regression,” Machine Learn-
ing, vol. 104, no. 2, pp. 151–194, 2016.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105.

[6] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., “Deep
speech: Scaling up end-to-end speech recognition,” arXiv preprint
arXiv:1412.5567, 2014.

[7] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Advances in Neural Information
Processing Systems, 2015, pp. 649–657.

[8] T. Varga and H. Bunke, “Comparing natural and synthetic training data
for off-line cursive handwriting recognition,” in IEEE Workshop on
Frontiers in Handwriting Recognition. IEEE, 2004, pp. 221–225.

[9] N. Macia, E. Bernadó-Mansilla, and A. Orriols-Puig, “Preliminary
approach on synthetic data sets generation based on class separability
measure,” in IEEE International Conference on Pattern Recognition
(ICPR). IEEE, 2008, pp. 1–4.

[10] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique,” Journal of Ar-
tificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[11] A. Le Guennec, S. Malinowski, and R. Tavenard, “Data augmentation
for time series classification using convolutional neural networks,”
in ECML/PKDD Workshop on Advanced Analytics and Learning on
Temporal Data, 2016.

[12] F. Petitjean, G. Forestier, G. I. Webb, A. E. Nicholson, Y. Chen,
and E. Keogh, “Faster and more accurate classification of time series
by exploiting a novel dynamic time warping averaging algorithm,”
Knowledge and Information Systems, vol. 47, no. 1, pp. 1–26, 2016.

[13] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and
G. Batista, “The UCR time series classification archive,” July 2015,
www.cs.ucr.edu/∼eamonn/time series data/.

[14] F. Petitjean, A. Ketterlin, and P. Gançarski, “A global averaging method
for dynamic time warping, with applications to clustering,” Pattern
Recognition, vol. 44, no. 3, pp. 678–693, 2011.

[15] F. Petitjean, G. Forestier, G. I. Webb, A. E. Nicholson, Y. Chen, and
E. Keogh, “Dynamic time warping averaging of time series allows faster
and more accurate classification,” in IEEE International Conference on
Data Mining (ICDM), 2014, pp. 470–479.

[16] F. Petitjean and P. Gançarski, “Summarizing a Set of Time Series by
Averaging: from Steiner Sequence to Compact Multiple Alignment,”
Theoretical Computer Science, vol. 414, no. 1, pp. 76–91, Jan. 2012.

[17] G. Forestier et al., “Supporting website : http://germain-forestier.info/
src/icdm2017/,” 2017.

[18] J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis,” Psychometrika, vol. 29, no. 1, pp. 1–27,
1964.

[19] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, no. Jan, pp. 1–30, 2006.

