
ar
X

iv
:1

80
8.

10
59

4v
2 

 [
cs

.L
G

] 
 1

3 
D

ec
 2

01
8

Noname manuscript No.
(will be inserted by the editor)

Proximity Forest

An effective and scalable distance-based classifier for

time series

Benjamin Lucas · Ahmed Shifaz ·

Charlotte Pelletier · Lachlan O’Neill ·

Nayyar Zaidi · Bart Goethals ·

François Petitjean · Geoffrey I. Webb

the date of receipt and acceptance should be inserted later

Abstract Research into the classification of time series has made enormous
progress in the last decade. The UCR time series archive has played a signifi-
cant role in challenging and guiding the development of new learners for time
series classification. The largest dataset in the UCR archive holds 10 thousand

time series only; which may explain why the primary research focus has been
on creating algorithms that have high accuracy on relatively small datasets.

This paper introduces Proximity Forest, an algorithm that learns accurate
models from datasets with millions of time series, and classifies a time series in
milliseconds. The models are ensembles of highly randomized Proximity Trees.
Whereas conventional decision trees branch on attribute values (and usually
perform poorly on time series), Proximity Trees branch on the proximity of
time series to one exemplar time series or another; allowing us to leverage
the decades of work into developing relevant measures for time series. Prox-
imity Forest gains both efficiency and accuracy by stochastic selection of both
exemplars and similarity measures.

Our work is motivated by recent time series applications that provide orders
of magnitude more time series than the UCR benchmarks. Our experiments
demonstrate that Proximity Forest is highly competitive on the UCR archive:
it ranks among the most accurate classifiers while being significantly faster.
We demonstrate on a 1M time series Earth observation dataset that Proximity
Forest retains this accuracy on datasets that are many orders of magnitude
greater than those in the UCR repository, while learning its models at least
100,000 times faster than current state of the art models Elastic Ensemble and
COTE.

Faculty of Information Technology
25 Exhibition Walk
Monash University, Melbourne
VIC 3800, Australia
E-mail: {benjamin.lucas,charlotte.pelletier,ahmed.shifaz,nayaar.zaidi,lsone1}@monash.edu
E-mail: {bart.goethals,francois.petitjean,geoff.webb}@monash.edu

http://arxiv.org/abs/1808.10594v2


2 Benjamin Lucas et al.

Keywords time series classification, scalable classification, time-warp
similarity measures, ensemble

1 Introduction

A growing number of time series applications address training from or-
ders of magnitude more series than the largest in the benchmark UCR
repository— the 8,926 training series ElectricDevices data set. In contrast, the
phoneme dataset [17] contains 370,000 series. The satellite dataset [45] con-
tains 1,000,000 series. The prior state-of-the-art in time series classification
does not scale to such quantities. In 2017, a meticulous study was conducted
to compare the behaviour of the state-of-the-art [1]. The authors draw the
following conclusions:

1. The state-of-the-art is led by four classifiers that are: Collection of Trans-
formation Ensembles (COTE) [2], Elastic Ensembles (EE) [27], Shapelet
Transform (ST) [18] and Bag of SFA Symbols (BOSS) [39].

2. COTE is a special case in that it subsumes two of the other classifiers: it
is a large ensemble classifier that includes EE and ST as sub-classifiers;
COTE is on average, “clearly superior to other published techniques.”

3. COTE’s runtime complexity is bounded by (a) Shapelet Transform, which
is O(n2 · l4) [2] for n time series of length l, and (b) the parameter searches
for EE, some of which are O(n2 · l3). The authors conclude “An algorithm
that is faster than COTE but not significantly less accurate would be a
genuine advance in the field.”

This is the challenge we tackle in this paper: developing an algorithm that
is competitive with the accuracy of the state-of-the-art, but can learn from
datasets with millions of time series. We call our algorithm Proximity Forest.
It is a tree based ensemble that makes the most of the decades of research into
developing consistent similarity measures for time series.

Typical decision trees branch on the value of an attribute. Treating the
values at each time stamp as belonging to a single attribute does not work
well on time series because the relevant signals are not necessarily aligned by
time stamp. Instead, Proximity Forest branches on the proximity of a query
time series to a set of reference series. ‘Proximity’ is defined by a given (time
series) similarity measure and a set of parameters (most time series measures
have parameters that are critical to their proper function). Our trees define
separating hyperplanes for which the position is supported by time series them-
selves (whereas a traditional tree would split using a threshold on the value of
an attribute). Proximity Forest, as opposed to nearest neighbour approaches,
truly abstracts a model from data, which makes it possible to classify with
time that is logarithmic with respect to training set size, as opposed to linear
time for EE and COTE. Moreover, we will show that we specifically designed
its training to scale linearly with the quantity of data, as opposed to at least
quadratically for EE, COTE and ST.



Proximity Forest 3

8 58 438 3325 25251 191751 1001444
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

(a) (b)

Fig. 1 Comparison of Proximity Forest (in blue) with Elastic Ensemble (in red). (a) Clas-
sification accuracy as a function of the size of the training data. (b) Training time as a
function of the size of the training data. Note that we take Elastic Ensemble because it is
the classifier that prevents scalability of the state-of-the-art COTE ensemble, which includes
EE as one of its classifiers.

Figure 1 shows the accuracy and the training time required by Proximity
Forest and EE on our satellite dataset with increasing training set size. Two
important elements are illustrated: (1) Proximity Forest scales linearly with
training set size while EE scales quadratically; and, (2) Proximity Forest’s
classification accuracy on this dataset is substantially better than EE, even
when they train on the same quantity of data. For our application, Proximity
Forest can learn from 1M time series in 17 hours (on 1 CPU) while it would
take over 200 years for EE – a 103,000x speedup. Furthermore, ST and COTE
learn slower than EE and thus will have even larger training times. Note
that EE is a component of COTE and hence sets a lower bound on COTE’s
training time. Our discussion will often focus on EE because EE is very similar
to our algorithm in that it is trying to leverage existing time series similarity
measures.

The virtues of Proximity Forest are not limited to large datasets, however.
Our experiments show that it also outperforms EE in classification accuracy
on the majority of the datasets of the UCR Archive.

The remainder of this paper is structured as follows: in Section 2, we re-
view the state-of-the-art in time series classification, with a particular focus on
scalability. We then introduce Proximity Forest in Section 3. Our experiments
(Section 4) show that Proximity Forest (1) outperforms all other scalable al-
gorithms on our case study in both accuracy and training time; and (2) is
competitive with the state-of-the-art on UCR data in terms of accuracy. The
section ends with a study of Proximity Forest’s parameters and a discussion
of how their values vary the results.



4 Benjamin Lucas et al.

2 Time series classification – related work

We present here a non-exhaustive review of the state-of-the-art in time se-
ries classification and similar decision tree-based algorithms. We focus on our
particular interest in this paper: scalable training and classification.

2.1 Distance-based classification

2.1.1 Distances

Time series have particular properties that have led to the development of spe-
cific similarity measures: they are often auto-correlated (the value of the time
series at a timestamp is likely to be close to the ones just before and after), and
often include non-linear distortions in the time axis (for example, because the
start of the phenomenon of interest is delayed, or because sections of the phe-
nomena are faster or slower). This has rendered typical similarity measures
severely flawed and led to the development of specific similarities, of which
most have an ability to re-align the series along a common intrinsic time-line.
Important measures include Dynamic Time Warping (DTW) [36,37], Deriva-
tive DTW (DDTW) [23,13], Weighted DTW (WDTW) [20], Longest Common
Subsequence (LCSS) [48], Edit Distance with Real penalty (ERP) [6,7], Time
Warp Edit distance (TWE) [28] and Move-Split-Merge (MSM) [44]. A more
complete description and comparison of these distance measures can be found
in [1,27,49]. Note also that most of these distances have parameters of which
tuning is critical to their functioning.

2.1.2 Nearest-neighbor approaches

It is most common to classify time series data using Nearest Neighbour classi-
fication based on a relative distance (such as those returned from the measures
above) [15]. In fact, for more than a decade, the NN algorithm combined with
the DTW measure was extremely difficult to beat [49].

It is important to note here that when researchers mention the use of
NN with a time series measure, the measure is not directly applied with a
default parameterization, but rather its parameters are first learned on the
data, usually by cross-validation.

There are two main issues with NN approaches: (1) the tuning of the
measures’ parameters is usually quadratic with the size of the training data,
and (2) the classification is at least linear with the size of the training data.
Both of these issues are further compounded by the fact that most measures
have a computational complexity that sits between linear and quadratic with
the length of the series.

To alleviate the second issue of scalable classification, targeted techniques
have been developed. Data reduction techniques aim at simplifying the train-
ing database without penalizing the classification quality; either by directly



Proximity Forest 5

removing objects from the original database [31,47] or by summarizing the
database and replacing sets of time series with representatives using average
time series [34,32,33,29]. Indexing is more difficult on time series than it is on
traditional data, mostly because time series measures do not obey the trian-
gular equality (at most obeying a relaxed p-triangular inequality [24]), which
makes exact pruning very inefficient (however, a general approach to improv-
ing the efficiency of NN searches in non-Euclidean space is available in [25]).
To perform exact indexing, the main research effort has been put onto devel-
oping lower bounds (and mostly for DTW) [22,24]. Recently, impelled by the
motivating application of earth observation data analytics, we have developed
an algorithm for approximate and efficient NN search under DTW [45], an
algorithm using the idea of a hierarchical k-means clustering.

As mentioned previously, Elastic Ensemble (EE) [27] is a recent state-of-
the-art time series classifier. It is an ensemble of 11 NN classifiers, each learned
with a different time series measure (with their parameters tuned accordingly).
The EE algorithm has played a significant role in the design of Proximity Forest
and will be discussed at greater depth in Sections 3.1 and 3.2.

2.2 Approaches that learn features

The following approaches construct an abstraction of the training dataset by
learning features that represent the classes in the time series.

2.2.1 Shapelets

The aim of shapelet algorithms is to find subseries (or consecutive subsets of
time series) that can help discriminate between the different classes. To classify
a time series, the learned shapelet is placed at the best position in the time
series (usually under Euclidean distance), and the ‘matching’ of the shapelet
to the time series correspond to its distance at this best position. The original
shapelet-classifier [51] inserted this algorithm at the node of a decision tree as
a splitting criterion. This algorithm has a high training complexity (O(n4))
due to the large number of candidate shapelets and the repeated scanning of
the data. Subsequent research has focused on optimising the original algorithm
to address both classification accuracy and scalability, notably Fast Shapelets
[35], Learning Time Series Shapelets [14] and Shapelet Transforms [18].

Shapelet Transforms (ST) is a current state-of-the-art classifier that iden-
tifies the best k shapelets in a single scan of the data (the number of shapelets
can be reduced afterwards). The data is then transformed by defining an at-
tribute to represent each shapelet with the value being the (usually Euclidean)
distance between the shapelet and the best position in the time series. The
transformed dataset can now be used with any classifier or ensemble of clas-
sifiers (such as in [2]). While ST is considered a state-of-the-art classifier, it
has little potential to scale to large datasets given its training complexity of
O(n2 · l4).



6 Benjamin Lucas et al.

2.2.2 Bag of Words approaches

Bag of Words algorithms are similar to Shapelets in that they start by identi-
fying exemplar subseries in the data to discriminate between classes. However
rather than finding the similarity to the relative best positions in a time series,
bag of words approaches differentiate classes by the relative frequency of the
subseries. To calculate these frequencies, the algorithms discretise the values
into a series of symbols, assigning letters to each subseries, and thus repre-
senting the original time series as ‘words’. Notable approaches are the Bag
of Patterns [26]; the Symbolic Aggregate Approximation-Vector Space Model
(SAX-VSM) [43]; and the Bag of SFA Symbols (BOSS) [39], which is currently
considered state-of-the-art.

The BOSS algorithm transforms the time series into a word using a Sym-
bolic Fourier Approximation (SFA) [41] thus making it robust to noise and
delivering a high classification accuracy. It is however of limited use on large
datasets as it has a high training complexity O(n2) [1]. The authors identi-
fied this as a weakness and subsequently produced similar approaches with
improved scalability, the Bag of SFA Symbols in Vector Space (BOSS-VS)
[40]. The same authors recently proposed WEASEL [42], which improves on
the computation time of BOSS and on the accuracy of BOSS-VS, but has a
very high memory complexity (our experiments will show that it doesn’t scale
beyond 10,000 time series). In this way, WEASEL is more optimised for speed
on small datasets than for scalability.

2.3 Ensemble approaches

Ensemble approaches are combinations of multiple classifiers. Each contribut-
ing algorithm can be weighted to maximize classification accuracy, while the
time complexity is that of the slowest constituent. Some of these approaches
have been discussed above as they are based around one main type of classifier,
for example EE and ST.

The Collection of Transformation Ensembles (COTE) [2] is an ensem-
ble comprising 35 classifiers across four time series domains: time, frequency,
change and shapelet transformation. For the time domain, COTE uses the
11 distance measures of EE, while in the other three domains, classifiers are
recruited from outside time series classification – k-nearest neighbours, naive
Bayes, decision trees, random forest, rotation forest, support vector machines
(two models) and a Bayesian network approach. On the benchmark UCR
datasets, COTE has the highest average classification accuracy of all current
approaches. However, its time complexity is bound by that of the Shapelet
Transform, which is O(n2 · l4) and the parameter searches for the elastic dis-
tance measures (EE), some of which are O(n2 · l3).



Proximity Forest 7

2.4 Decision Tree approaches

A number of decision tree approaches have been developed for time series
classification.

Time Series Forest (TSF) [10] first derives summary features for all time
series by dividing them into intervals and summarising each interval by its
mean, standard deviation and gradient. Then a Random Forest-like strategy
is employed to select between a random subset of these features at each node in
each of an ensemble of trees. A novel selection criterion is used that considers
both entropy gain and the margin by which a feature separates the classes.
This continues until the entropy gain ceases to improve, at which stage the
node is defined as a leaf. TSF has been shown to be a reasonably accurate
classifier: its accuracy ranks behind EE and DTW without being significantly
worse [1]. However, its main virtue is computational efficiency. TSF learns in
O(n log(n) · l · k) for a forest of k trees built from n series of length l, which is
a much lower complexity than the current state-of-the-art.

Generalized Random Shapelet Forest (gRSF) [21] extracts a shapelet from
a randomly chosen time series and finds the distance between this time series
and each other time series. The data is then split according to whether it is
above or below a threshold distance to the representative shapelet. This is
applied recursively until the node is either pure on the number of instances re-
maining at a node is less than 3. As mentioned in section 2.2.1, the main pitfall
of shapelet-based methods is the high computational cost of finding candidate
shapelets and comparing shapelets to other time series. The gRSF minimises
this issue by randomising many of the model choices—a candidate shapelet is
generated from a randomly chosen time series by choosing a random starting
point and random length, this is repeated r times and the best candidate is
chosen for a given split. The resulting algorithm has accuracy competitive with
Learning Time Series Shapelets and better than DTW.

A number of approaches have been developed that form decision trees
where splits are based on similarity to chosen exemplars [3,11,50]. One strategy
is to select a single exemplar and then choose a cut point on a similarity
measure with respect to that exemplar. Series with similarity scores lower than
the cut point follow one branch and the remaining examples follow the other.
The other strategy is to select multiple exemplars, one associated with each
branch. Series follow the branch with whose exemplar they are most similar.
These approaches are hampered by the high computational complexity of their
search for exemplars at each node. Similarity Forests [38] and Comparison-
based Random Forests [16] generalise this idea to attribute-value data with
random selection of exemplars and developed forests of such trees. Similarity
Forests add a cutoff value on the difference in the distance between the two
exemplars, and optimizes that cutoff value based on weighted Gini. The idea
of using similarity as the splitting criterion in tree structures has also been
successfully used for indexing of regular tabular data [30,4,38] and of time
series with DTW [45].



8 Benjamin Lucas et al.

3 Proximity Forest

In this section, we present our novel algorithm for time series classification:
Proximity Forest. We start by highlighting why there is a need for a new time
series classifier. We then present our model and the two key algorithms (1)
how to learn a Proximity Forest and (2) classifying with a Proximity Forest.
We conclude this section with some comments about its complexity.

3.1 Why do we need a novel time series classifier?

The previous section highlighted that the last decade has seen numerous clas-
sifiers and distance measures specifically designed for time series classification.
Based on this, one could wonder why there is a need for a novel algorithm; the
answer is simple: most state-of-the-art algorithms do not scale to large time
series datasets. We have seen that some do not scale in the learning phase
(ST, EE, COTE). Others require a scan of the training database to perform
each classification (EE, COTE). Those that do scale to medium-size datasets,
such as BOSS-VS, compromise accuracy in order to do so (as we will show
for both our case study and for UCR datasets). Throughout the development
and advancement of much of the current state-of-the-art, scalability has usu-
ally been secondary to accuracy. This is because time is not a significant issue
when considering data with only few time series. However,a growing number
of modern applications consist of hundreds of thousands to millions of time
series. These applications require a classifier that is both accurate and scalable
in both learning and classification.

BOSS-VS is a classifier that appears to have developed with a focus on
scalability. However, as we will see in Section 4, its accuracy ranks some 30
percentage points lower in our case study, and therefore is not competitive
with the accuracy of the state-of-the-art.

While COTE is currently the state-of-the-art in terms of accuracy, its
learning phase is bound by the runtime complexity of both ST and EE. On
our 1M dataset – and as depicted in Figure 1 – the sole learning phase of
COTE associated to training EE would require 73 thousand days, or 200
years. This is even more startling knowing that the series in this dataset are
very short with only 46 timestamps.

The large runtime complexity of COTE is largely due to the fact that EE
does not abstract much information during the learning phase, and therefore
has a significantly greater number of processes to complete during testing. A
corollary of this is that a distance-based classifier that learns faster than EE
for the same level of accuracy would also present an improvement to COTE.
It is for this reason that our design of algorithm incorporates many elements
of EE—11 distance measures and similar parametrisation—and why our ex-
periments provide a direct comparison of Proximity Forest against EE.



Proximity Forest 9

We therefore argue that the need for a scalable and accurate classifier has
not yet been met. We incorporate three critical elements into the design of our
novel approach:

1. We make the most of over 30 years of research into designing consistent
measures for time series.

2. We specifically design our ensemble to have a high variability between the
different individual classifiers. This results in an improved overall classifi-
cation accuracy over a single classifier, based on the principle of ensemble
methods. In general, averaging the predictions of multiple models each hav-
ing high variance and low bias results in an ensemble classifier with a lower
total error than any single classifier. This is analogous to how a Random
Forest model, another ensemble of decision trees, will only learn from a
fraction of the available features for each individual node in order to in-
troduce variability between the trees [5,19]. This observation is important,
because we did not design the learning of an individual tree to maximize
its accuracy; if we had wanted to design a single tree model, we would have
made different design choices. We designed the learning of individual trees
so that the overall classification performance is maximised.

3. We design Proximity Forest to be extremely scalable with an average-case
learning complexity of O(n log(n) · l2) and a classification complexity of
O(log(n) · l2) per tree for n training time series of length l. This contrasts
with the state of the art learning in O(n2 ·l3) (Elastic Ensemble) or O(n2 ·l4)
(Shapelet Transform, COTE). Again here, we might have made different
choices if scalability wasn’t a design objective.

To achieve scalability we employ tree-based classifiers. These are scalable due
to their use of a divide-and-conquer strategy. At each level the data are divided
into multiple subsets, as result of which the trees are on average of depth
O(log n), hence increasing sublinearly in depth relative to training set size.

Our use of decision trees for time series classification is not novel in itself.
Trees are attractive due to their divide and conquer methodology and resulting
potential for efficient learning and classification. Previous implementations,
however, have lacked competitiveness in accuracy [10,11,50] or time [3,11,50].

To achieve scalability we merge the strategy of learning decision trees where
splits are based on similarity to chosen time series exemplars [3,11,50] with
the strategy of forming forests of such trees in which the exemplars are chosen
at random [38]. To this amalgam we add the critical ingredient of stochastic
selection between a large range of similarity measures, which both reduces bias
and provides a beneficial increase in variance between ensemble members.

3.2 How to learn a Proximity Forest?

We seek to learn a Proximity Forest from a training set comprising n labeled
time series, each of which is of length l, where the labels are integers from 1
to c.



10 Benjamin Lucas et al.

A Proximity Forest is an ensemble of k Proximity Trees. A Proximity Tree
is similar to a regular decision tree, but differs in the tests applied at internal
nodes. Whereas a regular decision tree applies a test based on the value of
an attribute (e.g. if height > 160 cm, follow the left branch, otherwise follow
the right branch), each branch of an internal node of a Proximity Tree has
an associated exemplar and an object follows the branch corresponding to
the exemplar to which it is closest according to a parameterized similarity
measure. We will see later how the exemplars and measures are chosen. A tree
is either a leaf or an internal node.

An internal node has two fields, measure, a function object × object → R,
and branches, a vector of branches. Each branch has two fields, a time series
(exemplar) and a tree to which an object is passed if it is nearer to the branch’s
exemplar than any other (subtree).

If all data reaching a node has the same class, i.e. is pure, the create_leaf

function creates a new leaf node and assigns this class label to its field class.
This label is then assigned to any query time series reaching this leaf during
the testing phase.

How do we choose the splitting criteria? A Proximity Tree creates, at each
node, one branch for each class that exists in the data it receives from its par-
ent. These exemplars are chosen uniformly at random among each class. The
parameterized similarity measures are also chosen uniformly at random among
a pool that will be described below after we have given the main overview of
the algorithm. We will detail, after the main algorithm, how it is possible to
learn with randomized trees.

Algorithm 1 presents the algorithm for learning a single tree. Each node
is constructed recursively from the root node down to the leaves. If the data
at the node is pure – ie. all data belongs to the same class – then the node
becomes a leaf and the recursion finishes.

At each node, a pool of r candidate splits are evaluated (Algorithm 2).
For each candidate, a parameterised measure is chosen uniformly at random
among a pool of such measures. We then select an exemplar for each class
represented at the node and pass the data down the branches by finding the
closest exemplar (one per class) for each time series in the data using the split’s
distance measure.

Once each candidate split has been created, we then select the candidate
that maximizes the difference between the Gini impurity of the parent node
and the weighted sum of Gini impurity of the child nodes. We then call the
construction of the tree recursively on each branch for the successful candidate;
this constructs all subtrees. When this is done, the tree is constructed.

Increasing the number of candidate splits per node will lead to an im-
provement of the quality of each split. However, it will also lead to an increase
of the training time. The choice for the value of r will be discussed later in
Section 4.3.2.



Proximity Forest 11

Algorithm 1: build_tree(D,∆,R)

Input: D: a time series dataset
Input: ∆: a set of parameterized distance measures
Input: R: number of candidate splits to consider at each node
Output: T : a Proximity Tree

if is_pure(D) then

return create_leaf(D)

// create tree, to be returned, represented as its root node

T ← create_node()

// Creating R candidate splitters

R← ∅
for i = 1 to R do

r ← gen_candidate_splitter(D,∆) // generate random splitter

Add splitter r to R

// select best splitter; it splits using measure δ⋆ and exemplars E⋆

(δ⋆, E⋆)← argmax
r∈R

Gini(r)

Tδ ← δ⋆ // retain measure for root node of T

TB ← ∅ // TB will store the branches under root node of T

foreach exemplar e ∈ E⋆ do

// D⋆
e is the subset of D that are the closest to e based on δ⋆

D⋆
e ←







d ∈ D | argmin
e′∈E∗

δ⋆(d, e′) = e







t← build_tree(D⋆
e , ∆,R) // build subtree for that branch

Add branch (e, t) to TB // a branch is a pair (exemplar,sub-tree)

return T

Algorithm 2: gen_candidate_splitter(D,∆)

Input: D: a time series dataset.
Input: ∆: a set of parameterized distance measures to sample from
Output: (δ,E): a parameterized distance measure and a set of exemplars

δ
∼
←− ∆ // sample a parameterized measure δ uniformly at random from ∆

// Select one exemplar per class to constitute the set E

E ← ∅
foreach class c present in D do

Dc ← {d ∈ D | class(d) = c} // Dc is the data for class c

e
∼
←− Dc // sample an exemplar e uniformly at random from Dc

Add e to E

return (δ,E)

The case of R = 1: is selecting at random still ‘learning’? One might wonder
what the tree is actually learning when one only considers a single candidate
(R = 1). In that case, no selection of ‘the best possible split’ is performed. It is
interesting to note that choosing splitting criteria independently of the output
value has been studied before, a key example being Extremely Randomized



12 Benjamin Lucas et al.

Trees [12]. In that work, they showed that splitting completely at random
still ensures consistency (tending to Bayes Optimal error as the data tends
to infinity). The main reason is that the exemplars are not random points in
the input space. They are sampled from the data distribution of each class.
In consequence, the trees are still learning an abstraction of the data, using
the trees as a density estimator [46].

We depict in Figure 2 a graphical representation of a simple split obtained
on the Trace dataset. It is interesting to see that in Euclidean space, the
splitting criterion is actually forming a hyperplane that is equidistant to the
exemplars. Note that this intuition is more complex for time series measures,
because most of them do not have properties of a metric [24]. The scatter plot
depicts each time series as a dot in this space, with the x-axis representing
distance to the first exemplar and the y-axis distance to the second.

How to choose the parametrised measure on which to split? The parametrised
distance measure gives a measure of the similarity between the exemplar time
series. For each candidate split at each node, the algorithm chooses a dis-
tance measure at random from the following 11 distance measures used by
the Elastic Ensemble (EE) learner that we described above: Euclidean Dis-
tance (ED); Dynamic Time Warping using the full window (DTW); Dynamic
Time Warping with a restricted warping window (DTW-R); Weighted Dy-
namic Time Warping (WDTW); Derivative Dynamic Time Warping using the
full window (DDTW); Derivative Dynamic Time Warping with a restricted
warping window (DDTW-R); Weighted Derivative Dynamic Time Warping
(WDDTW); Longest Common Subsequence (LCSS); Edit Distance with Real
Penalty (ERP); Time Warp Edit Distance (TWE); and, Move-Split-Merge
(MSM). Randomising the choice of distance measure is a deliberate decision
to introduce variability between each tree, for the reasons stated earlier.

Once a distance measure is chosen at random, it is then parametrised. The
parametrisations are addressed in turn. They are deliberately chosen to mimic
as closely as possible the EE algorithm. Even though better values might be
chosen here, we mimic EE’s parameterization to allow direct comparison. Eu-
clidean distance, full DTW, and full DDTW distances have no parameters to
select. DTW-R and DDTW-R only require a warping window parameter that
is chosen uniformly at random in [[0, ⌊ l+1

4
⌋]] (thus allowing a warping of elements

at most l

2
apart). WDTW and WDDTW requires also one parameter to select

that it is used into the weighted value g to control the level of penalization
between two different time stamps – we use g ∼ U(0, 1). The parametrisation
of ERP is a distance threshold that controls for how close elements have to be
to be considered similar; we sample it uniformly at random in [σ

5
, σ], with σ

being the standard deviation of the data. LCSS has as first parameter the same
distance threshold value (which is sampled in the same way), and has a second
parameter – the warping window size – which is chosen in the same way as for
DTW-R. TWE has two parameters γ and λ which respectively control for the
stiffness and penalty value in the alignment. Following [28], λ is sampled at
random from ∪9

i=0
i

9
and γ following at random from the exponentially grow-



Proximity Forest 13

Distance to the left exemplar

D
is

ta
n
c
e
 t

o
 t

h
e
 r

ig
h
t 

e
x
e
m

p
la

r

Right exemplarLeft exemplar

Fig. 2 Visual depiction of the root node for the ‘Trace’ dataset (simplified to 2 classes).
The top chart represents the data at the root node (one colour per class) while the data at
the bottom left and right represent the data once split by the tree. The two time series in
the middle left and right are the exemplars on which the tree is splitting. The scatter plot
at the center represents the distance of each time series at the root node with respect to the
left and right exemplars (resp. x- and y-axes).

ing sequence {10−5, 10−4, 51̇0−4, 10−3, 51̇0−3, · · · , 1}, resulting in 100 possible
parameterizations. The final measure, MSM, has a single parameter which is
sampled from an exponential sequence similar to the one for γ in TWE with
100 values ranging from 10−2 to 102, as recommended in [44].

Choosing the parameter at random has a twofold effect: 1) it skips the cross-
validation step which has a quadratic complexity; and 2) it introduces variabil-
ity between trees, which provides superior learning through lower-biased trees
and ensembling. In the following experiments we will show that Proximity
Forest is not only orders of magnitude faster than EE, but that its accuracy
also ranks higher than EE.



14 Benjamin Lucas et al.

3.3 Classifying with a Proximity Forest

The process of classification for a single Proximity Tree is detailed in Algo-
rithm 3: a query time series begins at the root node and the distance from the
query to each of the exemplar time series is calculated, by using the node’s dis-
tance measure and exemplars selected when constructing the tree. The query
time series is then passed down the branch of the exemplar to which it is
nearest. The query time series then traverses down the tree by repeating this
process until it reaches a leaf, where it is assigned the class represented by
that leaf. This process is repeated for each tree constructed as part of the
forest. A Proximity Forest then uses majority voting between its constituent
Proximity Trees.

Algorithm 3: classification(Q, T )

Input: Q: Query Time Series
Input: T : Proximity Tree

if is_leaf(T ) then
return majority class of T

// find the branch with exemplar closest to Q using measure Tδ

(e, T ⋆)← argmin
(e′,T ′)∈TB

Tδ(Q, e′)

return classification(Q,T ⋆) // recursive call on subtree T ⋆

3.4 Comparative complexity analysis

During the training phase, at each node, let us assume that n′ data points are
present at the node. We first scan it once taking O(n′) time to split the data
into c groups, one for each class c present at the node.

We then generate r candidate splits, i.e., r sets of exemplar time series.
For each such candidate set, we sample c′ 6 c exemplar time series, i.e., one
time series for class represented among the n′ time series available at the node
– this is done in O(1) given that the data is already organised by class. For the
candidate split to be operational, we also require a parameterized measure to
use to compare against these c′ exemplars. Most of the parametrized measures
can be chosen in O(1), except for LCSS and ERP which calculate the standard
deviation in O(n′ · l) for data at the node while selecting the parameter.1

We now have r candidate splits that are ready to be evaluated. We now
wash the n′ time series down the branches for all candidate splits. This is done
by comparing each time series to the c′ exemplars, each comparison taking
from O(c · l) to O(c · l2). Overall, this takes O(n′ · c′ · l2). If r = 1, the training

1 Note that these parametrisations can be performed in constant time also if the data are
z-normalized, which is the case for all UCR datasets.



Proximity Forest 15

process at this node is finished and we call the training function recursively
for each of the c′ children nodes. If r > 1, we calculate the Gini coefficient for
each of the r candidate splits in O(c2), keep the best one, and delete other
candidate splits.

As the total number of examples that reach any of the nodes at a single
given level cannot be greater than the total number of examples, n, the total
computation per level of the tree is thus O(n·r·c·l2). In the worst case, the ma-
jority of the training data at each level will pass down a single branch and the
depth of the tree will be O(n), resulting in a worst training time complexity of
O(n2 · r · c · l2). However, as the exemplars are following the class distribution,
unless the data are in some way degenerate (for example if one class comprises
only outliers), the average tree depth can be expected to be O(log n). In prac-
tice it will often be much smaller, because, unlike typical divide and conquer
approaches, the tree terminates as soon as a node is pure rather than having
to separate each individual object. Thus, for non-degenerate data we can ex-
pect average case training time complexity of O

(

n log(n) · r · c · l2
)

for a single

tree and thus O
(

k · n log(n) · r · c · l2
)

for a full Proximity Forest comprising k

Proximity Trees.
The experiments presented in the next section will include runtimes and

comparison to current state-of-the-art algorithms. These confirm that this ex-
pected average case quasi-linear complexity with respect to data quantity is
borne out in practice.

During classification, a time series of length l will pass through an average
of logn nodes on each of the k trees. At each node, the distance to at most
c exemplars must be computed. For each of these distance computations, the
complexity will again depend upon the chosen distance measure; the fastest
being O(l) and the slowest O(l2). Thus, the resulting average case complexity
is O(k · logn · c · l2).

4 Experiments

This section describes the experiments that evaluate our Proximity Forest.
We start with the Satellite Image Time Series (SITS) dataset, a (very) large
time series dataset describing the evolution of the Earth as pictured every five
days by a high-resolution satellite. This dataset is an example of the large
time series datasets that motivate the need for a new time series classification
algorithm, as no current state-of-the-art approach scales to this magnitude.
Conversely, there are classifiers designed for scalability, namely BOSS-VS, that
compromise classification accuracy to do so. The first experiments presented in
this section use the SITS dataset to demonstrate the ability of Proximity Forest
to be both scalable and accurate. The second section assesses the Proximity
Forest on the datasets of the UCR time series classification repository [8],
the benchmark in the field. It demonstrates that the classification accuracy
of Proximity Forest is competitive with the current state-of-the-art. The final
section discusses other considerations surrounding Proximity Forest, such as



16 Benjamin Lucas et al.

the effect of varying the number of trees, and the standard deviation of the
results.

It should be mentioned that throughout the following experiments we have
emphasized a comparison with EE. This is because it is viewed as the closest
relative to Proximity Forest amongst the current state-of-the-art, given that
neither method includes data transforms or shapelets. It is also the constituent
of COTE that bounds its learning time and therefore any improvement over
the runtime of EE, for the same classification accuracy, would also equate to
an improvement on COTE, the current leader in the field.

To facilitate others to build on our work, as well as to ensure repro-
ducibility, we have made our code and the full raw results available at
https://github.com/fpetitjean/ProximityForest/.

4.1 Case study: Satellite Image Time Series Dataset

The SITS dataset contains approximately 1 million time series with a train-
test split of approximately 90%-10%.2 Each time series has a length of 46 and
is labeled as one of 24 possible land-use classes (e.g. ‘wheat’, ‘corn’, ‘planta-
tion’, ‘urban’). Here the labeled data has been extracted from three sources:
1) ground field campaigns for most of the vegetation classes, 2) farmer’s dec-
laration to complete the data for some crop classes, and 3) existing map for
the urban areas.

The experiments presented in this section were performed on this dataset,
comparing the performance of Proximity Forest against three competitors:
BOSS-VS (designed for scalability), WEASEL (designed for speed and qual-
ity), and EE (designed for quality). We use 5 runs for each experiment of
Proximity Forest and 1 run of each of the competitors – as their results are
deterministic. Throughout this experiment, we use 100 trees; we will see in
Section 4.2 that this gives a good tradeoff between accuracy and computa-
tional time/memory. Although we are mainly assessing the scalability, we will
also have a quick look to the accuracy.

4.1.1 Training scalability

To assess scalability, we train and test each algorithm on subsample data with
increasing training set size, allowing training time, testing time and accuracy
to be measured as a function of training size. Figure 3(a) shows training time
against training size for each of the 4 algorithms.

Versus EE. First, it is evident that Proximity Forest presents a notable saving
in training time over EE, confirming that it trains in linear time rather than
the quadratic time for EE. Even for a small training set of about 2,000 time
series, learning an EE model took about 10 hours, compared to Proximity

2 The split ensures that no 2 times series come from the same plot of land.

https://github.com/fpetitjean/ProximityForest/


Proximity Forest 17

(a) (b)

Fig. 3 Training time (a) and testing time per query (b) as a function of training set size
for Proximity Forest, EE, WEASEL and BOSS-VS.

Forest’s 79 seconds. Fitting a quadratic curve through both EE and Proximity
Forest is quite informative: EE returns a quadratic component of 6.3 while
Proximity Forest only −8.10× 10−6, clearly highlighting both the quadratic
complexity of EE, and also that Proximity Forest is in practice very close to
its theoretical average complexity and scales quasi-linearly with n.

Versus WEASEL. WEASEL is very fast but its memory footprint did not
allow it to scale beyond 8,000 time series even when given 64 GB of RAM.
This clearly highlights the difference with BOSS-VS: we can see that WEASEL
was not developed for scalability, but rather for speed on small datasets.

Versus BOSS-VS Proximity Forest trains slower than BOSS-VS for a given
training size, however this is counteracted by the low accuracy of BOSS-VS
discussed below.

4.1.2 Testing scalability

Figure 3(b) shows testing time against training size for each of the 4 algo-
rithms. The story here is very similar to that of training: it confirms the way
Proximity Forest scales logarithmically with training set size, while EE must
scan the full database many times. Here again, WEASEL becomes infeasible
to apply with relatively small quantities of training data. Proximity Forest
and BOSS-VS require respectively 0.0679 ms and 0.0077 ms to classify a time
series with a model trained on 1M time series.

4.1.3 Is Proximity Forest accurate and scalable?

We have now seen that Proximity Forest is highly scalable and only beaten
by BOSS-VS in terms of training time. We will now study how its accuracy
scales with training set size. The main results are presented in Figure 4 which



18 Benjamin Lucas et al.

8 58 438 3325 25251 191751 1001444
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Fig. 4 Accuracy as a function of training set size for Proximity Forest, EE, WEASEL and
BOSS-VS.

plots the accuracy as a function of training set size for Proximity Forest, EE,
WEASEL and BOSS-VS.

The first element to observe is that Proximity Forest obtains greater accu-
racy than the competitors for large training sets. WEASEL and EE become
infeasible to apply at relatively small data quantities and BOSS-VS – which
is faster than Proximity Forest – does not learn effective classifiers on this
dataset. With 63.8% accuracy at 3,400 training set size, this is 26.3 percent-
age points more accurate than BOSS-VS, and 4.6 and 4.7 percentage points
more accurate than WEASEL and EE, respectively. Such differences are sub-
stantial in a problem comprising 24 classes.

Moreover, Proximity Forest is more accurate than the other algorithms
from 500 training instances upwards. This is not surprising, as trees usually
have a better control over variance than NN algorithms, because of their higher
bias and abstraction capabilities. Proximity Forest thus appears to be both
accurate and highly scalable. We will show in the next subsection that this
result holds also on the benchmark UCR archive.

4.2 Experiments on the UCR Archive

In this section, we study the behavior of Proximity Forest on the 85 datasets
of the traditional UCR archive [8]. It is useful to remember here that our aim
is not to show that Proximity Forest is more accurate than the state-of-the-
art, but only that it is competitive while being highly scalable. We compare
the mean error-rate of Proximity Forest to the error-rates on the standard
train/test split for the state-of-the-art, as tested in [1]. We average Proximity
Forest results over 10 runs for each experiment. We compare Proximity Forest
to five classifiers currently representing the state-of-the-art – DTW-R, COTE,



Proximity Forest 19

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Elastic Ensemble

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ox

im
ity

 F
or

es
t (

r=
5)

(a) (b)

Fig. 5 Comparison of Proximity Forest and Elastic Ensemble classifiers on UCR datasets
in terms of a) accuracy and b) training and testing times in log scale.

EE, ST and BOSS3. The Proximity Forest results are obtained for 100 trees
with selection between 5 candidates per node. A detailed discussion about the
Proximity Forest parameters will be performed in Section 4.2.

We first show the comparison with Proximity Forest’s closest relative, EE.
Figure 5 provides scatter plots of the relative accuracy, total training time and
total testing time of each of these classifiers. Each point represents a different
UCR dataset. Figure 5(a) shows that Proximity Forest is more accurate on
60 datasets and less accurate on only 11 datasets, with 14 ties. Moreover, for
many datasets Proximity Forest is substantially more accurate than EE.

Figure 5(b) demonstrates that Proximity Forest has several orders of mag-
nitude advantage in training time. When considering testing time, Proximity
Forest has greater test time per query than EE for 12 datasets, the majority
of which are small datasets (i.e. less than 50 training instances). The largest
such difference is observed for the Phonemes dataset for which Proximity For-
est takes about 17 seconds per query compared to 13 seconds per query for
EE. In contrast, the test time for Proximity Forest is much smaller than EE
for the biggest datasets (i.e. more than 800 training instances). For example,
the biggest test time difference is for the HandOutlines dataset for which Prox-
imity Forest takes about 19 seconds per query compared to 286 seconds per
query for EE.

The commonly accepted method to compare multiple classifiers over mul-
tiple datasets is by average ranks. For each dataset, we rank the classifiers and
then calculate the average of each classifier’s ranks across all datasets. When
comparing 6 algorithms over 85 datasets, [9] shows that for the rankings to be

3 It should be highlighted that the results presented here are for the original BOSS al-
gorithm, and not the BOSS-VS discussed above in the SITS experiments. BOSS-VS is a
scalable variation of BOSS, where concessions are made to accuracy in favor of training
time. The original BOSS is therefore more competitive in this section.



20 Benjamin Lucas et al.

Fig. 6 Critical difference diagram for five state-of-the-art classifiers and Proximity Forest
(PF) with 5 candidates.

significantly different at level α = 0.05, the critical difference (CD) between
the average ranks has to be greater than:

CD = q0.05(A) ·

√

A(A+ 1)

6 ·Nd

= 2.850 ·

√

42

510
≈ 0.82 (1)

The average ranks and critical difference are presented in Figure 6; the critical
difference of 0.82 is displayed by the black line. It can be seen that COTE ranks
highest (average rank of 2.28), which is to be expected considering it incor-
porates the other state-of-the-art algorithms. However, COTE is not ranked
significantly higher than Proximity Forest (average rank of 2.88) or ST (av-
erage rank of 3.08). Proximity Forest is ranked second. Its rank is not signif-
icantly different to COTE, ST or BOSS, but it is ranked significantly higher
than both EE and DTW. This affirms Proximity Forest as a classifier with
accuracy competitive with the state-of-the-art.

Proximity Forest is the most accurate classifier for 22 of the 85 datasets.
However, there is no obvious commonality between these datasets to suggest
conditions under which the algorithm is likely to excel. The detailed accuracy
results for Proximity Forest and the five state-of-the-art algorithms are shown
in Appendix A.

4.3 Parameters of Proximity Forest

Proximity Forest has two main parameters that merit further investigation.
We first explore the sensitivity of accuracy to the number of trees in each
ensemble. Then, we discuss the influence of the number of candidates assessed
at each node. A third design choice, random selection of similarity measure
per tree as opposed to per node, is explored in Appendix B.
4.3.1 On the choice of the number of trees

The number of trees is the first parameter of the Proximity Forest algorithm
with the optimal value being large enough to provide competitive accuracy,



Proximity Forest 21

Fig. 7 Critical difference diagram for Proximity Forest with 5, 10, 50 or 100 trees.

yet small enough not to create excessive computational expense. The UCR
datasets experiments outlined above were repeated with values of 5, 10, 50,
and 100 trees to analyse how many trees were required to meet our needs.
Here, the number of candidates r has been fixed to 1. The Proximity Forest
results are averaged over 50 runs. Figure 7 presents the critical difference
diagram for accuracy and different number of trees. As expected, the more
trees the higher the average accuracy: models with 100 trees had an average
rank of 1.19 compared to 1.93, 2.98 and 3.89 for models with 50, 10, and 5
trees respectively. The difference between the highest ranked models are large
enough to say that models with 100 trees are significantly better than models
with 50 trees at the level of alpha equals 0.05.

Figure 8 compares the classification accuracy for 100 trees against 10 and 50
trees by representing them as a ratio of their error rates. Each point represents
a single dataset. This shows that having 100 trees is better on most datasets.
Moreover, the fact that the data is gathered close to the line with equation
x = 1 shows that it is unlikely that more trees would provide a very significant
improvement, because the ratio of error-rates between 100 and 50 is already
close to 1 (ie the errors are only slightly reduced). We have not experimented
with forests comprising more than 100 trees as we felt the computational
demands outweighed the expected benefits for our large set of experiments.
Memory, training time and testing time all scale linearly with the number of
trees, which means that doubling the number of trees doubles the required
memory and time. However, where computational resources are not an issue,
the take home message is that the more trees the better.

As a randomized algorithm, it is finally interesting to study the standard
deviation of the errors for Proximity Forest and how it varies with the number
of trees. This is what we present in Figure 9 where the y-axis represents the
standard deviation on error-rate for 100 trees as a function of the standard
deviation on k equals to 5, 10, and 50 trees. Each point represents a single
dataset. One can see that the standard deviation reduces as we increase the
number of trees, and that the magnitude of this improvement reduces when
increasing k. Results for 50 trees are starting to be relatively close to the y = x

line, showing that only marginal improvements could be expected when going
to k > 100.



22 Benjamin Lucas et al.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 8 Ratio of the error rates of Proximity Forest models: 100 trees over 10 trees (x-axis)
against 100 trees over 50 trees (y-axis). A value of less than 1 on either axis indicates that
the model with 100 trees has higher accuracy.

4.3.2 Split selection using the Gini index

This section explores the influence of the number of candidates r that are ran-
domly selected at each node. As a reminder, a set of r candidates – exemplars
and parametrized distance measures – are evaluated at each node based on the
Gini index. The one maximizing the Gini index is retained. To evaluate the
influence of r, the UCR experiments were repeated for 1, 2, and 5 candidates
on 100 trees. The results are averaged over 10 runs.

Figure 10 compares the classification accuracy for 5 candidates against 1
and 2 candidates. Each point represents the ratio of the error for 5 candidates
to that for the alternative on an UCR dataset. Choosing between 5 candi-
dates results in higher accuracy for most datasets. More precisely, selecting
between 5 candidates results in greater accuracy than either 1 or 2 candidates
on 61 datasets. Increasing the number of candidates lead to a reduction of the
randomness on each node by discarding the worse splitters. Accordingly, the
overall Proximity Forest accuracies are improved.

Increasing the number of candidates to more than 5 may further improve
the classification accuracy. However, increasing the number of candidates per
node has substantial impact on training time. Indeed, the analysis of the Prox-
imity Forest’s computational complexity in section 3.4 shows that the training
time scales linearly with the number of candidates. To verify this analysis,
we compare both training and testing time of Proximity Forest for 1 and 5
candidates in Figure 11. The testing time is displayed per query. Each point
represents a dataset. The results show a mean increase of 4.6 times in training



Proximity Forest 23

0 0.02 0.04 0.06 0.08
0

0.02

0.04

0.06

Fig. 9 Standard deviations σ of error rates on the 85 datasets of the UCR archive for
Proximity Forest models: 100 trees against 50, 10 and 5 trees.

time between 1 and 5 candidates, and a mean decrease of 0.93 times in testing
time.

It is notable that selection between multiple alternatives both reduces test-
ing time and increases the training time by slightly less than the expected
multiple of 5 times. This is because it results in slightly shallower trees. Se-
lection of better splits better separates the classes, requiring fewer splits to
obtain pure nodes that are made into leaves.

The tuning of the number of candidates is therefore driven by a trade-off
between accuracy and time.

5 Conclusion

We introduced Proximity Forest: a novel, scalable algorithm for accurate time
series classification. Motivated by a need for an algorithm that could learn
from millions of time series, Proximity Forest is an ensemble of trees with a
novel splitting criterion that makes it possible to make the most of decades of
work in designing time series measures. In our case study, we demonstrated
that Proximity Forest scales quasi-linearly with the quantity of training data,
whereas most state-of-the-art algorithms scale quadratically. Our experiments
on the UCR datasets show that Proximity Forest is not only very fast. It also



24 Benjamin Lucas et al.

0.2 0.4 0.6 0.8 1.0 1.2
err (r=5) / err (r=1)

0.2

0.4

0.6

0.8

1.0

1.2

er
r (

r=
5)

 / 
er

r (
r=

2)

r = 5 wins here

r = 2 wins here

r =
 1

 w
in

s h
er

e
Fig. 10 Ratio of the error rates of Proximity Forest models: 5 candidates over 1 candidate
(x-axis) against 5 candidates over 2 candidates (y-axis). A value of less than 1 on either axis
suggests that the model with 5 candidates has superior accuracy

Fig. 11 Training and testing time of Proximity Forest for 1 and 5 candidates on UCR
datasets.

has highly competitive accuracy relative to the current state-of-the-art, and is
significantly more accurate than EE.

We believe that there are a number of improvements that can be explored
to increase the accuracy of Proximity Forest while maintaining its quasi-linear
complexity, such as improving the randomized selection of parameters for the



Proximity Forest 25

distance measures – the current strategy was designed primarily to emulate
EE as directly as possible. We would also like to investigate to what extent
this novel algorithm might shed new light on the task of time series indexing.

Supplementary material

To ensure reproducibility, we make available the re-
sults of the experiments as well as our source code at
https://github.com/fpetitjean/ProximityForest/.

Acknowledgements

This research was supported by the Australian Research Council under grant
DE170100037. This material is based upon work supported by the Air Force
Office of Scientific Research, Asian Office of Aerospace Research and Devel-
opment (AOARD) under award number FA2386-17-1-4036. We are grateful to
the editor and anonymous reviewers whose suggestions and comments have
greatly strengthened the paper.

References

1. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classi-
fication bake off: a review and experimental evaluation of recent algorithmic advances.
Data Mining and Knowledge Discovery 31(3), 606–660 (2017)

2. Bagnall, A., Lines, J., Hills, J., Bostrom, A.: Time-series classification with COTE: the
collective of transformation-based ensembles. IEEE Transactions on Knowledge and
Data Engineering 27(9), 2522–2535 (2015)

3. Balakrishnan, S., Madigan, D.: Decision trees for functional variables. In: IEEE Inter-
national Conference on Data Mining (ICDM-06), pp. 798–802 (2006)

4. Bernhardsson, E.: Indexing with Annoy (2013). https://github.com/spotify/annoy

5. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
6. Chen, L., Ng, R.: On the marriage of lp-norms and edit distance. In: Proceedings of the

Thirtieth international conference on Very large data bases-Volume 30, pp. 792–803.
VLDB Endowment (2004)

7. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object
trajectories. In: Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, pp. 491–502. ACM (2005)

8. Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G.: The UCR
time series classification archive (2015). www.cs.ucr.edu/~eamonn/time_series_data/

9. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of
Machine learning research 7(Jan), 1–30 (2006)

10. Deng, H., Runger, G., Tuv, E., Vladimir, M.: A time series forest for classification and
feature extraction. Information Sciences 239, 142–153 (2013)

11. Douzal-Chouakria, A., Amblard, C.: Classification trees for time series. Pattern Recog-
nition 45(3), 1076–1091 (2012)

12. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine learning
63(1), 3–42 (2006)

13. Górecki, T., Łuczak, M.: Using derivatives in time series classification. Data Mining
and Knowledge Discovery pp. 1–22 (2013)

https://github.com/fpetitjean/ProximityForest/
https://github.com/spotify/annoy
www.cs.ucr.edu/~eamonn/time_series_data/


26 Benjamin Lucas et al.

14. Grabocka, J., Wistuba, M., Schmidt-Thieme, L.: Fast classification of univariate and
multivariate time series through shapelet discovery. Knowledge and Information Sys-
tems 49(2), 429–454 (2016)

15. Haghiri, S., Ghoshdastidar, D., von Luxburg, U.: Comparison-Based Nearest Neighbor
Search. arXiv e-prints, arXiv:1704.01460 (2017)

16. Haghiri, S., Garreau, D., von Luxburg, U.: Comparison-Based Random Forests. arXiv
e-prints, arXiv:1806.06616 (2018)

17. Hamooni, H., Mueen, A.: Dual-domain hierarchical classification of phonetic time series.
In: 2014 IEEE International Conference on Data Mining, pp. 160–169. IEEE (2014)

18. Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series
by shapelet transformation. Data Mining and Knowledge Discovery 28(4), 851–881
(2014)

19. Ho, T.K.: Random decision forests. In: Document Analysis and Recognition, 1995.,
Proceedings of the Third International Conference on, vol. 1, pp. 278–282. IEEE (1995)

20. Jeong, Y.S., Jeong, M.K., Omitaomu, O.A.: Weighted dynamic time warping for time
series classification. Pattern Recognition 44(9), 2231–2240 (2011)

21. Karlsson, I., Papapetrou, P., Bostr??m, H.: Generalized random shapelet forests. Data
Mining and Knowledge Discovery 30(5), 1053–1085 (2016)

22. Keogh, E., Wei, L., Xi, X., Lee, S.H., Vlachos, M.: LB_Keogh supports exact indexing of
shapes under rotation invariance with arbitrary representations and distance measures.
In: Proceedings of the 32nd international conference on Very large data bases, pp. 882–
893. VLDB Endowment (2006)

23. Keogh, E.J., Pazzani, M.J.: Derivative dynamic time warping. In: Proceedings of the
2001 SIAM International Conference on Data Mining, pp. 1–11. SIAM (2001)

24. Lemire, D.: Faster retrieval with a two-pass dynamic-time-warping lower bound. Pattern
recognition 42(9), 2169–2180 (2009)

25. Lifshits, Y.: Nearest neighbor search: algorithmic perspective. SIGSPATIAL Special
2(2), 12–15 (2010)

26. Lin, J., Khade, R., Li, Y.: Rotation-invariant similarity in time series using bag-of-
patterns representation. Journal of Intelligent Information Systems 39(2), 287–315
(2012)

27. Lines, J., Bagnall, A.: Time series classification with ensembles of elastic distance mea-
sures. Data Mining and Knowledge Discovery 29(3), 565 (2015)

28. Marteau, P.F.: Time warp edit distance with stiffness adjustment for time series match-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 306–318
(2009)

29. Marteau, P.F.: Times series averaging and denoising from a probabilistic perspective on
time-elastic kernels. arXiv preprint, arXiv:1611.09194 (2016)

30. Muja, M.: FLANN-Fast library for approximate nearest neighbors.
www.cs.ubc.ca/research/flann/

31. Pękalska, E., Duin, R.P., Paclík, P.: Prototype selection for dissimilarity-based classi-
fiers. Pattern Recognition 39(2), 189–208 (2006)

32. Petitjean, F., Forestier, G., Webb, G.I., Nicholson, A.E., Chen, Y., Keogh, E.: Dynamic
time warping averaging of time series allows faster and more accurate classification. In:
2014 IEEE International Conference on Data Mining, pp. 470–479. IEEE (2014)

33. Petitjean, F., Forestier, G., Webb, G.I., Nicholson, A.E., Chen, Y., Keogh, E.: Faster and
more accurate classification of time series by exploiting a novel dynamic time warping
averaging algorithm. Knowledge and Information Systems 47(1), 1–26 (2016)

34. Petitjean, F., Gançarski, P.: Summarizing a set of time series by averaging: From Steiner
sequence to compact multiple alignment. Theoretical Computer Science 414(1), 76–91
(2012)

35. Rakthanmanon, T., Keogh, E.: Fast shapelets: A scalable algorithm for discovering
time series shapelets. In: Proceedings of the 13th SIAM international conference on
data mining, pp. 668–676. SIAM (2013)

36. Sakoe, H., Chiba, S.: A dynamic programming approach to continuous speech recog-
nition. In: Proceedings of the seventh international congress on acoustics, vol. 3, pp.
65–69. Budapest, Hungary (1971)

http://arxiv.org/abs/1704.01460
http://arxiv.org/abs/1806.06616
http://arxiv.org/abs/1611.09194
www.cs.ubc.ca/research/flann/


Proximity Forest 27

37. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word
recognition. IEEE transactions on acoustics, speech, and signal processing 26(1), 43–49
(1978)

38. Sathe, S., Aggarwal, C.C.: Similarity Forests. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’17, pp. 395–
403. ACM (2017). DOI 10.1145/3097983.3098046

39. Schäfer, P.: The BOSS is concerned with time series classification in the presence of
noise. Data Mining and Knowledge Discovery 29(6), 1505 (2015)

40. Schäfer, P.: Scalable time series classification. Data Mining and Knowledge Discovery
pp. 1–26 (2015)

41. Schäfer, P., Högqvist, M.: SFA: A symbolic fourier approximation and index for
similarity search in high dimensional datasets. In: Proceedings of the 15th In-
ternational Conference on Extending Database Technology, EDBT ’12, pp. 516–
527. ACM, New York, NY, USA (2012). DOI 10.1145/2247596.2247656. URL
http://doi.acm.org/10.1145/2247596.2247656

42. Schäfer, P., Leser, U.: Fast and accurate time series classification with WEASEL. In:
Proceedings of the 2017 ACM on Conference on Information and Knowledge Manage-
ment, pp. 637–646. ACM (2017)

43. Senin, P., Malinchik, S.: SAX-VSM: Interpretable time series classification using SAX
and vector space model. In: 2013 IEEE 13th International Conference on Data Mining,
pp. 1175–1180. IEEE (2013)

44. Stefan, A., Athitsos, V., Das, G.: The move-split-merge metric for time series. IEEE
transactions on Knowledge and Data Engineering 25(6), 1425–1438 (2013)

45. Tan, C.W., Webb, G.I., Petitjean, F.: Indexing and classifying gigabytes of time series
under time warping. In: Proceedings of the 2017 SIAM International Conference on
Data Mining, pp. 282–290. SIAM (2017)

46. Ting, K.M., Zhu, Y., Carman, M., Zhu, Y., Zhou, Z.H.: Overcoming key weaknesses of
distance-based neighbourhood methods using a data dependent dissimilarity measure.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1205–1214. ACM (2016)

47. Ueno, K., Xi, X., Keogh, E., Lee, D.J.: Anytime classification using the nearest neighbor
algorithm with applications to stream mining. In: Data Mining, 2006. ICDM’06. Sixth
International Conference on, pp. 623–632. IEEE (2006)

48. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing multidimensional
time-series. The VLDB Journal???The International Journal on Very Large Data Bases
15(1), 1–20 (2006)

49. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Exper-
imental comparison of representation methods and distance measures for time series
data. Data Mining and Knowledge Discovery 26(2), 275–309 (2013)

50. Yamada, Y., Suzuki, E., Yokoi, H., Takabayashi, K.: Decision-tree induction
from time-series data based on a standard-example split test. In: Pro-
ceedings of the Twentieth International Conference on International Confer-
ence on Machine Learning, ICML’03, pp. 840–847. AAAI Press (2003). URL
http://dl.acm.org/citation.cfm?id=3041838.3041944

51. Ye, L., Keogh, E.: Time series shapelets: a novel technique that allows accurate, inter-
pretable and fast classification. Data mining and knowledge discovery 22(1), 149–182
(2011)

http://doi.acm.org/10.1145/2247596.2247656
http://dl.acm.org/citation.cfm?id=3041838.3041944


28 Benjamin Lucas et al.

A Detailed UCR results



Proximity Forest 29

Table 1 Detailed UCR results for five state-of-the-art algorithms and Proximity Forest.
Bold values indicate the best accuracy scores. Proximity Forest results are obtained for 100
trees and 5 candidates, and averaged over 10 runs.

Train Test L C DTW BOSS ST EE COTE PF

Adiac 390 391 176 37 60.87 76.47 78.26 66.5 79.03 73.4

ArrHead 36 175 251 3 80.0 83.43 73.71 81.14 81.14 87.54

Beef 30 30 470 5 66.67 80.0 90.0 63.33 86.67 72.0

BeetFly 20 20 512 2 65.0 90.0 90.0 75.0 80.0 87.5

BirdChi 20 20 512 2 70.0 95.0 80.0 80.0 90.0 86.5

Car 60 60 577 4 76.67 83.33 91.67 83.33 90.0 84.67

CBF 30 900 128 3 99.44 99.78 97.44 99.78 99.56 99.33

ChloCon 467 3840 166 3 65.0 66.09 69.97 65.62 72.71 63.39

CinCECG 40 1380 1639 4 93.04 88.7 95.43 94.2 99.49 93.43

Coffee 28 28 286 2 100.0 100.0 96.43 100.0 100.0 100.0

Comput 250 250 720 2 62.4 75.6 73.6 70.8 74.0 64.44

CricketX 390 390 300 12 77.95 73.59 77.18 81.28 80.77 80.21

CricketY 390 390 300 12 75.64 75.38 77.95 80.51 82.56 79.38

CricketZ 390 390 300 12 73.59 74.62 78.72 78.21 81.54 80.1

DiaSizRed 16 306 345 4 93.46 93.14 92.48 94.44 92.81 96.57

DisPhAG 400 139 80 3 62.59 74.82 76.98 69.06 74.82 73.09

DisPhOC 600 276 80 2 72.46 72.83 77.54 72.83 76.09 79.28

DisPhTW 400 139 80 6 63.31 67.63 66.19 64.75 69.78 65.97

Earthqua 322 139 512 2 72.66 74.82 74.1 74.1 74.82 75.4

ECG200 100 100 96 2 88.0 87.0 83.0 88.0 88.0 90.9

ECG5000 500 4500 140 5 92.51 94.13 94.38 93.87 94.6 93.65

ECG5days 23 861 136 2 79.67 100.0 98.37 82.0 99.88 84.92

ElecDev 8926 7711 96 7 63.08 79.92 74.7 66.29 71.33 70.6

FaceAll 560 1690 131 14 80.77 78.17 77.87 84.85 91.78 89.38

FaceFour 24 88 350 4 89.77 100.0 85.23 90.91 89.77 97.39

FacesUCR 200 2050 131 14 90.78 95.71 90.59 94.49 94.24 94.59

50Words 450 455 270 50 76.48 70.55 70.55 81.98 79.78 83.14

Fish 175 175 463 7 83.43 98.86 98.86 96.57 98.29 93.49

FordA 3601 1320 500 2 66.52 92.95 97.12 73.79 95.68 85.46

FordB 3636 810 500 2 59.88 71.11 80.74 66.17 80.37 71.49

GunPoint 50 150 150 2 91.33 100.0 100.0 99.33 100.0 99.73

Ham 109 105 431 2 60.0 66.67 68.57 57.14 64.76 66.0

HandOut 1000 370 2709 2 87.84 90.27 93.24 88.92 91.89 92.14

Haptics 155 308 1092 5 41.56 46.1 52.27 39.29 52.27 44.45

Herring 64 64 512 2 53.12 54.69 67.19 57.81 62.5 57.97

InlSkate 100 550 1882 7 38.73 51.64 37.27 46.0 49.45 54.18

InsWinSou 220 1980 256 11 57.37 52.32 62.68 59.49 65.25 61.87

ItPowDem 67 1029 24 2 95.53 90.86 94.75 96.21 96.11 96.71

LaKitAp 375 375 720 3 79.47 76.53 85.87 81.07 84.53 78.19

Light2 60 61 637 2 86.89 83.61 73.77 88.52 86.89 86.56

Light7 70 73 319 7 71.23 68.49 72.6 76.71 80.82 82.19

Mallat 55 2345 1024 8 91.43 93.82 96.42 93.99 95.39 95.76

Meat 60 60 448 3 93.33 90.0 85.0 93.33 91.67 93.33

MedImg 381 760 99 10 74.74 71.84 66.97 74.21 75.79 75.82

MidPhAG 400 154 80 3 51.95 54.55 64.29 55.84 63.64 56.23

MidPhOC 600 291 80 2 76.63 78.01 79.38 78.35 80.41 83.64

MidPhTW 399 154 80 6 50.65 54.55 51.95 51.3 57.14 52.92

MotStr 20 1252 84 2 86.58 87.86 89.7 88.26 93.69 90.24

NoECGT1 1800 1965 750 42 82.9 83.82 94.96 84.58 93.13 90.66

NoECGT2 1800 1965 750 42 87.02 90.08 95.11 91.35 94.55 93.99

OliveOil 30 30 570 4 86.67 86.67 90.0 86.67 90.0 86.67

OSULeaf 200 242 427 6 59.92 95.45 96.69 80.58 96.69 82.73

PhalOC 1800 858 80 2 76.11 77.16 76.34 77.27 77.04 82.35

Phoneme 214 1896 1024 39 22.68 26.48 32.07 30.49 34.92 32.01

Plane 105 105 144 7 100.0 100.0 100.0 100.0 100.0 100.0

ProPhAG 400 205 80 3 78.54 83.41 84.39 80.49 85.37 84.63

ProPhOC 600 291 80 2 79.04 84.88 88.32 80.76 86.94 87.32

ProPhTW 400 205 80 6 76.1 80.0 80.49 76.59 78.05 77.9

RefrigDev 375 375 720 3 44.0 49.87 58.13 43.73 54.67 53.23

ScrType 375 375 720 3 41.07 46.4 52.0 44.53 54.67 45.52

ShapSim 20 180 500 2 69.44 100.0 95.56 81.67 96.11 77.61

ShapAll 600 600 512 60 80.17 90.83 84.17 86.67 89.17 88.58

SmKitAp 375 375 720 3 67.2 72.53 79.2 69.6 77.6 74.43

SonyAIR1 20 601 70 2 69.55 63.23 84.36 70.38 84.53 84.58

SonyAIR2 27 953 65 2 85.94 85.94 93.39 87.83 95.17 89.63

StarCur 1000 8236 1024 3 89.83 97.78 97.85 92.61 97.96 98.13

Strawber 613 370 235 2 94.59 97.57 96.22 94.59 95.14 96.84

SwedLeaf 500 625 128 15 84.64 92.16 92.8 91.52 95.52 94.66

Symbols 25 995 398 6 93.77 96.68 88.24 95.98 96.38 96.16

SynCon 300 300 60 6 98.33 96.67 98.33 99.0 100.0 99.53

ToeSeg1 40 228 277 2 75.0 93.86 96.49 82.89 97.37 92.46

ToeSeg2 36 130 343 2 90.77 96.15 90.77 89.23 91.54 86.23

Trace 100 100 275 4 99.0 100.0 100.0 99.0 100.0 100.0

2LeECG 23 1139 82 2 86.83 98.07 99.74 97.1 99.3 98.86

2Patterns 1000 4000 128 4 99.85 99.3 95.5 100.0 100.0 99.96

UWaAll 1000 6164 152 8 96.23 93.89 94.22 96.85 96.43 97.23

UWaX 896 3582 315 8 77.44 76.21 80.29 80.54 82.19 82.86

UWaY 896 3582 315 8 70.18 68.51 73.03 72.56 75.85 76.15

UWaZ 896 3582 945 8 67.5 69.49 74.85 72.36 75.04 76.4

Wafer 896 3582 315 2 99.59 99.48 100.0 99.74 99.98 99.55

Wine 57 54 234 2 61.11 74.07 79.63 57.41 64.81 56.85

WordSyn 267 638 270 25 74.92 63.79 57.05 77.9 75.71 77.87

Worms 181 77 900 5 53.25 55.84 74.03 66.23 62.34 71.82

Worms2 181 77 900 2 58.44 83.12 83.12 68.83 80.52 78.44

Yoga 300 3000 426 2 84.3 91.83 81.77 87.9 87.67 87.86

Av. rank 5.18 3.65 3.08 3.95 2.28 2.88

Wins 3 20 30 8 26 22



30 Benjamin Lucas et al.

B On a variation of the Proximity Forest

We decided to explore another variant of the Proximity Forest algorithm by
randomly selecting a distance measure for each tree, rather than for each node.
In this new variant, only the exemplars and the parameters of the distance-
metric are randomly chosen at each node. The UCR experiments were repeated
for 100 trees and 1 candidate for this new ‘on tree’ variant. Each Proximity
Forest result is averaged over 50 runs.

Figure 12 compares classification accuracy for the original version ‘on
node’, presented in section 3.2, and the proposed variant ‘on tree’. Each point
represents a single dataset of the UCR dataset. The number of trees has been
fixed to 100.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 12 Accuracy of Proximity Forest when randomly selecting the distance measure ‘on
node’ and ‘on tree’.

The results show a slight advantage for the ‘on node’ approach with 44 wins,
39 losses and 2 ties. Where the ‘on tree’ variant uses a single distance measure
per tree, the ‘on node’ variant allows multiple combinations of measures in a
single tree, thus making it more robust to inefficient metrics.


	1 Introduction
	2 Time series classification – related work
	3 Proximity Forest
	4 Experiments
	5 Conclusion
	A Detailed UCR results
	B On a variation of the Proximity Forest

