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ABSTRACT

Satellite image time series (SITS) have proven to be essential for
accurate and up-to-date land cover mapping over large areas. Most
works about SITS have focused on the use of traditional classifica-
tion algorithms such as Random Forests (RFs). Deep learning algo-
rithms have been very successful for supervised tasks, in particular
for data that exhibit a structure between attributes, such as space or
time. In this work, we compare for the first time RFs to the two
leading deep learning algorithms for handling temporal data: Re-
current Neural Networks (RNNs) and temporal Convolutional Neu-
ral Networks (TempCNNs). We carry out a large experiment using
Sentinel-2 time series. We compare both accuracy and computa-
tional times to classify 10,980 km2 over Australia. The results high-
lights the good performance of TemCNNs that obtain the highest
accuracy. They also show that RNNs might be less suited for large
scale study as they have higher runtime complexity.

Index Terms— satellite image time series, land cover mapping,
Sentinel-2, deep learning

1. INTRODUCTION

On March 7 2017, the European Space Agency (ESA) successfully
put its latest high-resolution optical satellite, Sentinel-2B, into orbit.
Both Sentinel-2A and 2B are now acquiring pictures of the Earth
every five days at high spatial and spectral resolutions [1]. These
new satellite image time series (SITS) are a powerful tool for the
management of territories and climate studies. Among these appli-
cations, we focus here on the production of accurate and up-to-date
land cover maps, such as the one displayed in Figure 1.

For this task, supervised classification algorithms have shown
their potential, especially traditional algorithms such as Random
Forests (RFs) and Support Vector Machines (SVMs) [2]. For exam-
ple, RFs are able to deal with the high dimensionality of SITS [3].
However, these methods are oblivious to the temporal structure of
SITS: a shuffle of the images in the series leads to similar results.
Hence, specific temporal dynamics will not be taken into account,
potentially leading to a decrease in the quality of the maps.

To make the most of SITS temporal dimension, recent works
have explored the potential of deep learning models. In partic-
ular, Recurrent Neural Networks (RNNs), developed initially for
sequence data, have been successfully applied to multi-temporal
Synthetic Aperture Radar (SAR) data [4, 5] and optical images
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Fig. 1. An example land cover map.

[6]. Meanwhile, we have also proposed the use of temporal Con-
volutional Neural Networks (TempCNNs), where convolutions are
applied in the temporal domain instead of the spatial domain, for the
classification of optical SITS [7]. Both RNNs and TempCNNs have
not been compared yet in the literature. Moreover, RNNs have been
applied to short time series (less than 25 time stamps) and on small
scale studies: fewer training instances (below 100,000) and/or small
studied area (below 100 km × 100 km).

Hence, this paper aims at filling the gap and studies the perfor-
mance of traditional and deep learning algorithms – RFs, RNNs, and
TempCNNs – for SITS classification on a large scale problem. More
specifically, we carry out experiments on 60 Sentinel-2 images ac-
quired over Australia. We perform quantitative – accuracy as well as
runtime complexity – and qualitative evaluations to highlight advan-
tages and potential drawbacks of the three algorithms. Note that this
work focuses only on the use of the temporal structure, and does not
cover the use of the spatial structure of SITS.

The remainder of this paper is organized as follows. The trained
classification algorithms are described in detail in Section 2. Then,
Section 3 introduces the data and the experimental settings used in
this work. Section 4 provides some quantitative results as well as
visual inspection of the produced land cover maps. Finally, conclu-
sions are drawn in Section 5.

2. CLASSIFICATION ALGORITHMS

2.1. Random Forests

Research into time series classification for remote sensing has con-
cluded that RFs are generally the most effective classifiers [8]. More
specifically, RFs present several advantages: they handle the high
dimensionality of SITS data, they are robust to a small presence of



mislabeled data [9], they perform well on large scale area [10], and
their parameters are easy to set [3].

RFs is an ensemble method that learns a set of binary decision
trees [11]. To increase the diversity among the ensemble, bootstrap
instances are used to build each tree. In addition, a random subset
of features is used to split the data at each node. Only the best split
is used, as assessed by a split effectiveness test such as the maxi-
mization of the node purity. The tree construction ends when all the
nodes are pure or when a user-defined criterion is met, e.g a maxi-
mum depth or a minimum node size.

2.2. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) have been proposed in remote
sensing for the classification of SITS. They have shown their po-
tential by outperforming traditional algorithms such as RFs or Sup-
port Vector Machines (SVMs) on small area case-studies (less than
100,000 training instances) [4, 12, 5, 6].

First developed for sequential data, RNN models have the speci-
ficity of sharing the learned features across different positions, e.g.
across different words in a sentence. This makes RNNs extremely
efficient to produce an output at each time step, such as in machine
translation. They have a high computational cost: back-propagating
the error at each time step increases drastically the training time, and
may cause learning issues such as vanishing gradient. Most recent
RNN architectures use Gated Recurrent Units (GRUs) that help to
capture long distance connections and solve the vanishing gradient
issue. They are composed of a memory cell as well as update and re-
set gates to decide how much new information to add and how much
past information to forget. Although RNNs are appealing for time
series, their potential for time series classification is less straight-
forward. Contrary to machine translation tasks, time series classi-
fication requires only one output for the whole time series. Hence,
RNNs might be less suited for this specific task.

2.3. Temporal Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have been widely applied
on various computer vision tasks [13]. They also lead the state-of-
the-art for some remote sensing tasks, including the classification of
hyper-spectral images. Despite their huge success, they have been
investigated only recently on time series classification [14]. The
specificity of these networks is to apply convolutions in the temporal
domain rather than the spatial domain.

3. MATERIAL AND METHODS

3.1. Sentinel-2 images

The experiments are carried out on 60 Sentinel-2 image time series
extracted over Victoria in Australia (tile T54HXE). Each image is
composed of ten spectral bands at 10 m spatial resolution (the sixth
bands at 20 m are spatially interpolated at 10 m). The series starts in
August 2017, and ends in July 2018. Figure 2 displays a false color
Sentinel-2 image from October 16 2017, and its location in Victoria.
This studied area is composed mainly of crops, some native forests
and few cities.

Atmospheric, adjacency and slope effects are corrected by using
MACCS/MAJA processing chain [15]. Images are eventually gap-
filled by using a linear temporal interpolation on a regular temporal
grid with a time gap of five days [10]. After the gapfilling operation,
a total of 730 features describes each pixel: 73 interpolated dates
multiply by 10 spectral bands.

Fig. 2. Studied area over Victoria (Australia). Sentinel-2 image in
false color from October 16 2017.

3.2. Reference data

The reference data has been kindly provided by Agriculture Victoria,
that has collected 250 m × 250 m homogeneous areas for vegeta-
tion and water classes. For vegetation classes (bare ground, canola,
legumes, cereals and grassland), we have extended the reference data
at the parcel level. Finally, we have manually extracted forests, water
surfaces and urban areas by photo-interpreting non-cloudy Sentinel-
2 images. Table 1 displays the number of pixels and polygons (i.e.
parcel-level for crop classes) for each land cover type. The legend
used in Section 4 is displayed in the last column.

Table 1. Number of instances per class counted at pixel- and
polygon-level.

Classes Pixels Polygons Legend
Bare ground 69,311 9
Canola 259,540 53
Cereals 1,087,238 174
Legumes 1,019,335 164
Grassland 179,901 101
Forests 150,470 30
Water 31,708 8
Urban 30,176 14
Total 2,827,679 553

Table 1 shows that the number of available instances varies
across the different land cover classes. The most represented classes
include crop classes such as cereals, legumes and canola. For the
evaluation in Section 4.1, 70 % of instances are used for training
(about 1.9M instances), and the remaining 30 % for testing (about
900k instances). The split is performed at the polygon-level to
ensure that pixels from the same polygons are not used as train
instances as well as test instances. Each is experiment is run five
times: we report mean and standard deviation values.

3.3. Classification algorithm settings

To complete RF experiments of Section 4, Scikit-Learn library
(Python) has been used with standard parameter settings [3]: 100
trees at the maximum depth of 25, a minimum node size of 1, and a
number of randomly selected variables per node equal to the square
root of the total number of features.

Concerning the architecture of the trained RNN models, we de-
cide to stack three Gated Recurrent Units (GRUs) composed of 192



units, and a Softmax layer that outputs the predictions. The archi-
tecture is similar to the recent work in [4], but we use bidirectional
GRUs to use both past and future information1.

Following our recent work on TempCNNs [7], we use here a
CNN network composed of three convolutional layers composed of
64 units, one fully-connected layer composed of 256 units, then the
Softmax layer.

For both deep learning networks, weight and bias parameters are
optimized by using Adam (Adaptive moment optimization) with its
default parameter values [16]. Batch size is set to 64, and the number
of epochs to 20. The cross-entropy loss computed on a validation set
is monitored: the best model is selected by using an early stopping
mechanism on the validation loss. The validation set is composed of
10 % of the training data extracted at the polygon-level.

Networks are implemented through Keras [17], with Tensor-
flow as the backend [18]. To facilitate others to build on this work,
we have made our code available at https://github.com/
charlotte-pel/igarss2019-dl4sits. To compare train
and test times, all the experiments have been carried out on the same
machine with 12 Central Processing Units (CPUs) and 256 GB of
RAM. To test the computational gain of Graphical Processing Units
(GPUs), we have also run deep learning experiments on an NVIDIA
Tesla V100 GPU.

4. EXPERIMENTAL RESULTS

To compare the three algorithms presented in Section 2, we perform
two experiments. First, we evaluate the performance of the algo-
rithms by computing the accuracy, training and testing times. Then,
we visually analyze the resulting land cover maps.

4.1. Comparison of classification algorithms

This section compares the relative performance – accuracy and run-
times – of the three algorithms presented in Section 2. Table 2 gives
the Overall Accuracy (OA) values, and the train and test times on
both CPUs and GPUs. Highest OA is depicted in boldface.

Table 2. Overall Accuracy (OA) and runtime for Random Forests
(RFs), Recurrent Neural Networks (RNNs), and temporal Convolu-
tional Neural Networks (TempCNNs).

RF RNN TempCNN
OA 94.0±0.9 % 90.8±2.1 % 94.5±1.0 %

CPU train 17 min±4 min 7h27±1h29 43 min±11 min
CPU train / epoch - 3h06±3 min 17±4 min

CPU test 3 s 9 min 1 min
GPU train - 1h15±16 min 18 min±5 min

GPU train / epoch - 31 min±1 min 6 min±1 min
GPU test - 5 min 38 s

Table 2 shows that RFs and TempCNN obtain similar accuracy
results, with TempCNNs obtaining the highest OA values. It also
shows that RNNs has a lower OA value of 3 % with the highest
runtime complexity. As it requires 9 minutes on CPU to classify
about 900k test instances, it will require almost 20 hours to obtain
the land cover map for the whole tile (about 120M pixels to classify),
versus 7 minutes for RFs and 2h15 for TempCNNs, respectively.

RF low runtime is its main advantage when dealing with large
scale studies. Training time for TempCNNs is on par with RF if

1We provide in our repository results for both mono-directional
and bidirectionall RNNs: https://github.com/charlotte-pel/
igarss2019-dl4sits.

training on GPU (with a batch size of 64). In addition, its transfer
learning capability might be a solution to the lack of accurate la-
beled training instances [19]. Finally, we would like to stress that
the results need to be reproduced for a finer nomenclature, for exam-
ple one that discriminates between types of crops (e.g. beans versus
lentils). We suspect that TempCNNs might outperform RFs more
significantly in that case: we previously found a difference of 3 % in
accuracy for a multi-crop study [7].

4.2. Visual analysis of the produced land cover maps

To ease the interpretation, we limit the visual analysis to two
square areas of 6 km × 6 km (600 pixels × 600 pixels), high-
lighted in blue and green in Figure 2. The results for the full area
are available at https://github.com/charlotte-pel/
igarss2019-dl4sits. Figure 3 shows the results for these
areas. The first column shows a Sentinel-2 image in false color from
September 26 2017. The other columns display the land cover maps
obtained by the three algorithms: RF, RNN and TempCNN. Legend
of land cover maps is displayed in Table 1.

For the first area, Figure 3 shows disagreements mainly on grass-
land areas (light green) where RF and RNN seem to exhibit more
noise than TempCNN. RF is better able to detect the linear forest
delineations (darker green). As for the second area, Figure 3 shows
disagreements between bare ground (grey) and legumes (orange). A
visual inspection of the corresponding discrepancies has shown that
a vegetation regrowth occurs around May 2018 for those areas where
bare ground is detected by RF but not by TempCNN. Both classifiers
are thus correct depending on the time. RNN also made a mistake
on one of those areas by classifying it as ‘urban’ (pink). Finally, the
presence of salt and pepper noise indicates that the three algorithms
could benefit from the use of spatial information.

5. CONCLUSION

This work tackles the choice of classification algorithms for the clas-
sification of new Sentinel-2 SITS over large areas. For the first time,
we compared RFs to RNNs and TempCNNs. The results show good
quantitative and qualitative results for RFs and TempCNNs. Con-
versely, RNNs seem less successful for the given classification task
due to its prohibitive time complexities (especially training time) and
its lower accuracy.
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