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Abstract

Satellite Image Time Series (SITS) analysis is an important domain with various applications in land study. In the coming years,
both high temporal and high spatial resolution SITS will become available. In the classical methodologies, SITS are studied by ana-
lyzing the radiometric evolution of the pixels with time. When dealing with high spatial resolution images, object-based approaches
are generally used in order to exploit the spatial relationships of the data. However, these approaches require a segmentation step
to provide contextual information about the pixels. Even if the segmentation of single images is widely studied, its generalization
to series of images remains an open-issue. This article aims at providing both temporal and spatial analysis of SITS. We propose
first segmenting each image of the series, and then using these segmentations in order to characterize each pixel of the data with a
spatial dimension (i.e., with contextual information). Providing spatially characterized pixels, pixel-based temporal analysis can be
performed. Experiments carried out with this methodology show the relevance of this approach and the significance of the resulting
extracted patterns in the context of the analysis of SITS.
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1. Introduction

Satellite Image Time Series (SITS) constitute a major re-
source for Earth monitoring. For the last decades, these image
series have been either sensed with a high temporal resolution
(daily coverage at a kilometer spatial resolution) or with a high
spatial resolution (weekly coverage at a meter spatial resolu-
tion). However, for a few years, satellites such as the Taiwanese
Formosat-2 are providing both high temporal and High Spatial
Resolution SITS (HSR SITS), but with a limited coverage of the
Earth surface and with only four spectral bands. In the coming
years, these kinds of data will become widely available thanks
to the ESA’s Sentinel program. The growing availability of
such images, periodically acquired by satellite sensors on the
same geographical area, will make it possible to produce and
regularly update accurate temporal land-cover maps of a given
investigated site.

In order to efficiently handle the huge amount of data that
will be produced by these new sensors, adapted methods for
SITS analysis have to be developed. Such methods should al-
low the end-user to obtain satisfactory results, e.g., relevant and
accurate temporal evolution behaviors, with minimal time (by
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automating the tasks which do not require human expertise),
and minimal effort (by reducing the parameters).

In the current standard methods, these data are studied by
analyzing the radiometric evolution of the pixels through the
time series. The underlying idea is to gather sensed areas that
undergo similar radiometric evolutions. This structuring of the
data makes it possible to extract both abrupt and long-term
changes. In this context, there is actually no difference between
a “real” change and a gradual one: both are described by evolu-
tion behaviors. In this way, if an sensed area (x, y) undergoes an
abrupt change (e.g., a clear cut or the building of a house), it will
be treated as a particular temporal behavior, i.e., this behavior
will emerge in the classification if it is sufficiently represented
in the dataset.

Due to the high spatial resolution of the future images,
the geometrical information of the scene could also be con-
sidered in the classification process by using object-based ap-
proaches. To this end, a segmentation process is required to ex-
tract segments based on radiometric homogeneity. Once these
segments are extracted, it is possible to characterize them us-
ing spatial/geometrical properties, to enhance the classification
process. However, the integration of a segmentation step in a
temporal classification framework remains an open-issue, since
neither the mapping between mono-temporal segmentations,
nor the temporal segmentation are resolved. A review of the
available literature on SITS analysis shows a lack of existing
methods responding to this need. This article aims at address-
ing this issue by characterizing a pixel with spatial properties in
order to improve the analysis of SITS.
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This article is organized as follows. Section 2 gives an
overview of existing methods for SITS analysis. Section 3 in-
troduces our generic methodology for spatio-temporal analysis
of SITS. Section 4 describes the experimental validation carried
out with this methodology. Section 5 presents the results ob-
tained using the proposed methodology. Conclusions and per-
spectives will be found in Section 6.

2. State of the art

SITS allow the analysis, through observations of land phe-
nomena, of a broad range of applications such as the study of
land-cover or the mapping of damage following a natural dis-
aster. These changes may be of different types, origins and du-
rations. For a detailed survey of these methods, the reader can
refer to (Coppin et al., 2004; Lu et al., 2004).

In the literature, we find three main families of methods.
Bi-temporal analysis, i.e., the study of transitions, can locate
and study abrupt changes occurring between two observations.
Bi-temporal methods include image differencing (Bruzzone &
Prieto, 2000), image ratioing (Jensen, 1981; Wu et al., 2005),
image composition (Ouma et al., 2008) or change vector anal-
ysis (CVA) (Johnson & Kasischke, 1998; Bovolo, 2009; Bahi-
rat et al., 2012). A second family of mixed methods, mainly
statistical methods, applies to two or more images. They in-
clude methods such as post-classification comparison (Foody,
2001), linear data transformation (PCA and MAF) (Howarth
et al., 2006), image regression or interpolation (Kennedy et al.,
2007) and frequency analysis (e.g., Fourier, wavelets) (Andres
et al., 1994; Tsai & Chiu, 2008). Then, we find methods dedi-
cated to image time series and based on radiometric trajectory
analysis (Jönsson & Eklundh, 2004; Verbesselt et al., 2010; Pe-
titjean et al., 2011c; Kennedy et al., 2010; Lui & Cai, 2011).

Regardless of methods used in order to analyze satellite im-
age time series, there is a gap between the amount of data com-
posing these time series, and the ability of algorithms to ana-
lyze them. Firstly, these algorithms are often dedicated to the
study of a change in a scene from bi-temporal representation.
Secondly, and this point is even more difficult to deal with, the
geometrical/spatial properties of the data are rarely taken into
account, except for the use of the pixel coordinates. Finally,
High Spatial Resolution SITS have given rise to the need for
spatially and temporally dedicated methods.

To improve the analyzing process by using the spatial rela-
tionships of the data, object-based methods have been recently
proposed (Blaschke, 2010). In a first step, the images are seg-
mented/partitioned into sets of connected regions. Then for
each region, geometric features (Carleer & Wolff, 2006) (e.g.,
area, elongation, smoothness) or even contextual ones (Gae-
tano et al., 2009; Bruzzone & Carlin, 2006; Kurtz et al., 2010)
(e.g., spatial context, multi-scale/multi-resolution attributes) are
computed in order to characterize the regions. Finally, the re-
gions are classified using these features (Herold et al., 2003).

Object-based methods have shown promising results in
the context of single-image analysis. However, their exten-
sion/adaptation to SITS in order to exploit both the spatial and

temporal information contained in these data remains an open-
issue. Indeed, although several methods have been proposed
in order to map segments from one image to another (Gueguen
et al., 2006; Bovolo, 2009), to directly build spatio-temporal
segments (Fan et al., 1996; Moscheni et al., 1998; Tseng et al.,
2009), or even to consider object-based features (Hall & Hay,
2003; Niemeyer et al., 2008; Hofmann et al., 2008; Schopfer
et al., 2008; Tiede et al., 2011), their scalability to wide sensed
areas and their robustness to local disturbance (temporally and
spatially) remain problematic. The use of 3D-dedicated meth-
ods indeed requires a high temporal continuity; this constraint is
however rarely fulfilled by SITS, where the average time-delay
between two images is usually too high. As a consequence,
the temporal continuity of the observed phenomena can not be
assumed between samples. In addition, the irregular temporal
sampling of the image series (due to operational constraints of
remote sensing), would create a disparity of the spatio-temporal
regions in terms of their informativity. For instance, a region
spreading over four months should not have the same impor-
tance in the analysis, than a region spreading over a single sam-
ple (i.e., built over a single image). Thus, this article focuses
on mono-temporal spatial enrichment of the pixels, in order to
loosen the constraint on the pseudo-continuity.

We therefore suggest to classify SITS as the radiometric
evolution of sensed areas with time. Then, in order to take into
account the spatial properties of the data, we propose to char-
acterize each pixel with spatial and geometrical attributes ob-
tained using a pre-segmentation step. This formulation allows
the study of spatial characteristics over time while abstracting
from the correspondence between segments since the data re-
mains the pixel. Moreover, this formulation is aimed at obtain-
ing accurate and reliable evolution behavior maps both by pre-
serving the geometrical details in the images and by properly
considering the spatial context information.

This paradigm, using spatially characterized pixels, was
previously introduced and studied for contextual analysis (Mel-
gani & Serpico, 2002), multi-level segmentation of a single
image (Bruzzone & Carlin, 2006) and change detection in bi-
temporal images (Bovolo, 2009). In all these application do-
mains, such a paradigm has shown promising results. We pro-
pose, in this article, to extend it to the analysis of large SITS.

3. Spatio-temporal analysis methodology

In this section, we present the proposed approach, which is
composed of five main steps that are sequentially applied:

A. Segmentation of the images;
B. Characterization of the regions;
C. Construction of the vector images;
D. Construction of the time series;
E. Classification of the time series.

These steps are fully described in the remainder of this sec-
tion. The reader may also refer to Figure 1 for a visual outline
of the workflow of the proposed approach. Let us first estab-
lish the terminology used in the remainder of this article. The
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Figure 1: Workflow of the proposed approach that takes as input N images and
provides as output a classification map of the sensed scene. Different symbols
have been used to exemplify the steps of the proposed approach (R refers to
regions, p refers to pixels, v refers to vectors of pixels built through time). For
instance, the symbol R1

4(e = 0.2, s = 0.4, a = 0.3) means that the region R1
4 is

characterized by 3 feature values (e = elongation, s = smoothness, a = area).

term “sensed area” will be rather used than the term “pixel”,
since the notion of “pixel” usually refers to a mono-temporal
value, while we use in this work the (x, y) coordinates to locate
a geographic area. Contrary to the mono-image case, these no-
tions are not mixed up in the temporal case. Consequently, the
term “sensed area” will be used to designate the evolution of
the (x, y) geographic area with time, while the term “pixel” will
be used to designate a sensed value in a particular image.

Input/Output

Let us briefly define the input and the output of the proposed
method.

Input. The method takes as input a series Simage = 〈I1, . . . , IN〉

of N ortho-rectified images of width W and height H. Let
E = [[1,W]] × [[1,H]] where [[a, b]] denote the interval on Z,
bounded by a, b. The set E corresponds to the discretization
of the continuous space (i.e., the part of R2) which will be vi-
sualized in the images. Let B be the number of bands of the
images composing the series. Each multivalued (i.e., with mul-
tiple bands) image In (n ∈ [[1,N]]) can be seen as a function:

In : E → ZB
(x, y) 7→ In

1 (x, y) , · · · , In
B

(x, y) (1)

Note that the radiometric levels of the images do not have to
be comparable from one image to another. Thus, images can
be acquired by different sensors but must be of the same spatial
resolution.

Output. The method provides as output a classification of the
sensed scene, where areas that have evolved in a similar way are
clustered. Such classification can be modeled by a label image
IC : E → [[1,C]], which associates to each sensed area (x, y) a
class value IC(x, y) among the C possible ones.

Each class of the classification is also modeled by a centroid
sequence, which provides a concise representation of the under-
lying evolution behavior. This extra information is however not
studied in this article.

3.1. Segmentation of images

A segmentation of a multivalued image In is a partition
Sn = {Rn

i }
Rn

i=1 of [[1,W]]×[[1,H]]; broadly speaking, the scene vi-
sualized in In is “decomposed” into Rn distinct parts Rn

i , which
are supposed to present specific radiometric properties. We will
denote Rn

i as a region of the image In. To any segmented image
In, we then associate a region image

In
R : E → [[1,Rn]]

(x, y) 7→ In
R(x, y) (2)

Such region image is a function that associates to each sensed
area (x, y) a region label In

R(x, y) among the Rn possible ones.
Once the N images have been segmented (producing N re-

gion images In
R, (n ∈ [[1,N]])), it is then possible to characterize

each region of each segmentation by following the next step.
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3.2. Regions characterization

Numerous features (spectral, geometrical, topological, etc.)
can be computed for the regions of a segmentation in order to
characterize them. Each feature can be seen as a function F
associating to each region Rn

i (i ∈ [[1,Rn]]) of a segmentation
Sn a corresponding feature value F(Rn

i ) ∈ Rα. Although the
classical case corresponds to mono-dimensional features in R,
certain features can be seen as multi-dimensional ones in Rα

(e.g., correlated textural features, multi-scale features).

F : [[1,R]] → Rα

Rn
i 7→ F(Rn

i ) (3)

Once a region is characterized by a (multidimensional) feature
value, it is then possible to affect this value to all the pixels
composing the region. Let Z be the number of region-features
chosen to describe every sensed area (x, y) of every image.

3.3. Construction of vector images

At this step, each pixel of a multivalued image In can be char-
acterized by two types of information:

- directly sensed values (i.e., B values, denoted In
b with

b ∈ [[1,B]];

- region-associated values (i.e., Z values, denoted Fa

with a ∈ [[1,Z]]).

All these values are normalized over the image time series by
using the extrema values of the attributes in the dataset. It is
then possible to combine these features to build “enriched” pix-
els in order to better characterize them. To process, a vector
of features is created and associated to each one of the pixels
contained in the image In. Finally, by applying this step to each
image of the series, we build N vector images defined as:

Vn : E → [0, 1]B+Z

(x, y) 7→
∏B

b=1 In
b (x, y) ×

∏Z
a=1 Fa(In

R(x, y))
(4)

3.4. Construction of time series

Let S be the dataset built from the image time series. S is
the set of sequences defined as:

S =
{
〈V1(x, y), · · · ,VN(x, y) 〉 | x ∈ [[1,W]] , y ∈ [[1,H]]

}
(5)

In these sequences, each element is (B+Z)-dimensional. Since
high-dimensional spaces do not often provide the best solutions,
we will study different subspaces of this (B +Z)-dimensional
space in the experiment part (e.g., time series where each pixel
is characterized by a 5-tuple composed of three directly sensed
values and two region-associated values).

3.5. Classification of the time series

The extraction of relevant temporal behaviors from satellite
image time series can be realized using a classification algo-
rithm. Once these time series have been built, it becomes pos-
sible to classify them into different clusters/classes of interest.

To this end, the proposed methodology makes it possible to use
either supervised or unsupervised classification algorithms.

A classification of a set of sequences S is a partition C =

{Ci}
C
i=1 of E; broadly speaking, as each temporal sequence is

associated to a sensed area (x, y), the whole scene can be “de-
composed” into C distinct parts Ci, which are supposed to rep-
resent similar temporal evolution behaviors. We will denote Ci

as a cluster/class. The classification can be modeled by a label
image IC : E → [[1,C]], which associates to each sensed area
(x, y) a class value IC(x, y) among the C possible ones

IC : E → [[1,C]]
(x, y) 7→ IC(x, y) (6)

4. Material and experimental settings

To assess the relevance of the proposed generic spatio-
temporal analysis methodology, we have applied it to the classi-
fication of agronomical areas. Starting from the different issues
raised by this applicative context, we show in this section how
the proposed methodology can be used as a potential solution
to address them.

4.1. Applicative context: Crop monitoring

The analysis of agronomical areas is important for the mon-
itoring of physical variables, in order to give information to the
experts about pollution, vegetation health, crop rotation, etc.
This monitoring is usually achieved through remote sensing.
Indeed, by using classification processes, satellite image time
series actually provide an efficient way to monitor the evolution
of the Earth’s surface. Moreover, when the classes of interest
are temporal (e.g., wheat crop, maize crop), the time dimension
of the data has to be taken into account by the classification al-
gorithms. For instance, the reflectance levels of the maize crop
and of the wheat crop are very similar while their temporal be-
haviors are quite different (i.e., wheat grows earlier in the year
than maize).

Thus, the usual strategy for land-cover mapping consists of
classifying the temporal radiometric profiles of the sensed ar-
eas (x, y). With the arrival of SITS with high spatial resolution
(HSR), it becomes necessary to use the spatial information held
in these series, in order to either study the evolution of spa-
tial features, or to help characterizing the different land-cover
classes. Our experiments focus on the second point. The under-
lying idea is that several spatially-built features can be used in
the classification process. For example, some crops are usually
cultivated in smaller parcels than others, while having the same
radiometric temporal behavior (e.g., sunflower crop vs. wheat
crop). Another (non restrictive) example could be the use of the
smoothness of the regions, which could help, for instance, to
distinguish between tree-crop and forest.

In the remainder of this section, we experimentally demon-
strate how the proposed generic spatio-temporal analysis
methodology can be instantiated to enable the use of such
spatially-built features.
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Figure 2: Presentation of the dataset. (a) One image from the series (August,
4th 2007). (b) Sensing distribution of images sensed over 2007. Each spot
represents a sensed image.

4.2. Dataset description

We detail hereafter the main information concerning the im-
ages used for this work. The area of study is located near the
town of Toulouse in the South West of France. 15 cloud-free
Formosat-2 images sensed over the 2007 cultural year are ana-
lyzed. These images cover an area of 64 km2 (1, 000 × 1, 000
pixels). One image of the series is given in Figure 2(a) while
the temporal distribution of the sensed images is given in Fig-
ure 2(b).

From these images, we use the multi-spectral product at
a spatial resolution of 8 m with the four bands Near-Infrared,
Red, Green and Blue. Before being used in this work, the
Formosat-2 products have been ortho-rectified (guaranteeing
that a pixel (x, y) covers the same geographic area throughout
the image series). All images also undergo processes in order to
make the radiometric pixel values comparable from one image
to another. These processes consist of converting the digital
counts provided by the sensor into a physical magnitude and
in restoring their own contribution to the surface by correcting
for atmospheric effects. This procedure is detailed in (Hagolle
et al., 2010).

4.3. Experimental settings

This section aims at describing how the proposed generic
approach has been instantiated to deal with the presented crop

monitoring issue. However, we recall that the presented ap-
proach is not limited to this instantiation. The five steps de-
scribed in Section 3 have been performed as follows.

Segmentation of images. The segmentation of HSR satellite
images is not a trivial task since the different objects of interest
(and thematic ground areas) which are sensed by these images,
cannot be necessarily segmented at the same scale (i.e., scale
issue). For instance, the main environments, such as urban ar-
eas, rural zones, or forests, can be identified at coarsest scales,
while more detailed structures, such as buildings and roads, will
emerge at the finest ones (Blaschke, 2010). It is then difficult to
correctly segment all these thematic ground areas by using only
one segmentation result.

For the last decade, it has been shown that hierarchical seg-
mentation algorithms provide accurate results adapted to pro-
cess HSR images (Pesaresi & Benediktsson, 2001; Gaetano
et al., 2009). In particular, their combinations can provide an ef-
ficient way to deal with the scale issue (Akcay & Aksoy, 2008;
Kurtz et al., 2011a,b). However, the parameters of such algo-
rithms have to be tuned according to the characteristics of the
image modality (used as input) and the features of the objects
to be segmented. To avoid this parametrization problem (which
falls outside the scope of this article), we have chosen to use the
Mean-Shift segmentation algorithm (Comaniciu & Meer, 2002)
to segment each image of the series. Indeed, this algorithm is
intuitive to configure and has shown satisfactory results in the
context of the segmentation of remote sensing images (Huang
& Zhang, 2008). Although we know that considering a single
segmentation map for each image is, in most of the cases, a
sub-optimal approach (since the spatial arrangement of the ob-
jects in the image is intrinsically hierarchical), we assume that
when dealing with agricultural territories, the fields could be ef-
ficiently extracted at similar scales and thus, by using only one
segmentation map per image. We plan to address this aspect in
a future development of the work as stated in the conclusions.

The Mean-Shift segmentation algorithm performs as fol-
lows. For a given pixel, this algorithm builds a set of neigh-
boring pixels within a given spatial radius and color range. The
spatial and color center of this set is then computed and the al-
gorithm iterates with this new spatial and color center. There
are three main parameters: the spatial radius (denoted by hs)
used for defining the neighborhood, the range radius (denoted
by hr) used for defining the interval in the color space and the
minimum size M for the regions to be kept after segmentation.
We have used the OTB implementation of the Mean-Shift al-
gorithm. ORFEO Toolbox (OTB) is an open source library of
image processing algorithms developed by the French Space
Agency (CNES). http://www.orfeo-toolbox.org

In order to assess the robustness of the proposed approach
with regard to the segmentation step, the influence of the seg-
mentation parameters has been studied. Since the level of ge-
ometrical information extracted by the segmentation algorithm
depends on its parametrization, we have run the algorithm us-
ing different configurations of the parameters. In practice, the
minimum size M of the regions has been fixed to M = 25, corre-
sponding to the minimum expected size of the studied objects of
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interest. The ranges of the possible values for the other param-
eters hs and hr have been scanned exhaustively with a quite low
step (hs ∈ {1, 3, 5, · · · , 28, 30} and hr ∈ {1, 5, 10, · · · , 55, 60}).

The underlying idea of this experiment is to study the in-
fluence of the segmentation parameters on the classification re-
sults. To this end, only the radiometric mean of the regions has
been used to characterize the pixels for the classification (dur-
ing the construction of the time series).

Region characterization. Several characteristics can be useful
for the classification of agronomical scene. For instance, the
size of the regions could be used to discriminate small/large
fields, while the smoothness could be used to separate forest
regions from fields. In this way, the following region-associated
features have been computed:

- the mean of the infra-red band of the region (FNIR);
- the mean of the red band of the region (FR);
- the mean of the green band of the region (FG);
- the mean of the blue band of the region (FB);
- the area of the region (FArea);
- the elongation of the region (FElong.);
- the smoothness of the region (FS mooth.);
- the compactness of the region (FComp.).

The elongation is computed as the highest ratio between the
width and the length of several bounding boxes (computed for
different directions, i.e., each π/8). The smoothness is com-
puted as the ratio between the perimeter of the morphologi-
cally opened region and the original region. To this end, we
use a square-shaped opening structuring element invariant to
the scale (i.e., with a size depending on the area of the original
region). The size of the structuring element was set to

√
FArea.

The compactness is computed as the square root of the area of
the region multiplied by the length of the perimeter of the re-
gion.

Construction of vector images. As explained previously, each
pixel composing the SITS can be characterized by two types of
information: directly sensed values (denoted as INIR, IR, IG, IB),
and region-associated values (denoted as FNIR, . . . , FS mooth.).
All the values are normalized in [0, 1], attribute by attribute
over the series. This allows each attribute to be of compara-
ble weight for the classification step.

Construction of time series. In order to find the best separa-
tion of thematic classes and to assess (globally and indepen-
dently) the interest of the different contextual attributes, we
tested several combinations of twelve attributes over the time
series. All the possible combinations of the spatial attributes
(FArea, FElong., FS mooth., FComp.) were tested with either the pixel
radiometric values (INIR, IR, IG, IB), or the mean region ones
(FNIR, FR, FG, FB). The resulting 32 combinations are pre-
sented in Table 1. In particular, the combination ? (only the
pixel radiometric values without any region-associated feature)
represents the “classical” combination for pixel-based classifi-
cation of SITS.

Classification of time series. Classification problems are usu-
ally addressed using supervised or unsupervised algorithms.
Supervised classification algorithms require training examples
to learn the classification model. In our case, as we want to
demonstrate the relevance of the proposed data representation,
the choice and the suitability of the examples would create a
bias, which would make difficult to identify the benefits pro-
vided by the spatial features. In this way, choosing an unsu-
pervised classification step allows us to highlight the consis-
tency of the proposed approach, without being influenced by
several issues linked to the evaluation of supervised approaches
(choice of the algorithm, cross-validation, building and sam-
pling of the training set, etc.). We have then applied the clas-
sical K-means clustering algorithm (MacQueen, 1967) to clas-
sify the time series previously constructed. The distance used
to compare the time series of S is the Euclidean distance. Note
that other distances (and more relevant temporal ones (Petitjean
et al., 2011b,a, 2012)) could also be used.

The K-means algorithm has been used with as many classes
(see Table 2) as in the reference map (i.e., 25 seeds), and with 15
iterations; the process has generally converged afterwards (Bot-
tou & Bengio, 1995). Note that any clustering algorithm deal-
ing with numerical data could also be used.

4.4. Validation

To assess the quality and the accuracy of the results, the
classification maps obtained have been compared to:

1. a field survey (i.e., ground-truth) of the 2007 cul-
tural year (produced by the European Environment
Agency; see http://ec.europa.eu/agriculture/

index_en.htm for more details about the Common
Agricultural Policy.) covering a partial part of the studied
area (Figure 3(a));

2. a land cover reference map (produced by a supervised
classification method described in (Idbraim et al., 2009))
covering the totality of the studied area (Figure 3(b)).

Note that these two reference maps reflect the temporal behav-
ior of the considered crops over the 2007 cultural year and do
not reflect a static land cover state (i.e., representing a single
snapshot of the scene at a particular date). Such property is nec-
essary since we want to assess the accuracy of temporal classifi-
cation results. We also want to underline that, through the year,
the land cover types do not change (i.e., no crop rotation). This
fact justifies why the considered classes are designated by static
terms (e.g., corn, wheat, meadow) instead of being described
by dynamic ones (e.g., the class “ bare soil→ growth of corn
→ harvest”).

The classification maps obtained have been compared to
these maps using several evaluation indexes. To assess the
global accuracy of the obtained classification results, we have
computed respectively:

- the average F-measure F ;
- the Kappa index K ;
- the overall classification accuracyA.
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(a) (b)

Figure 3: Land cover reference maps of the 2007 cultural year. (a) Ground truth (covering a partial part of the studied area) related to a field survey produced by
the European Common Agricultural Agency. (b) Land cover reference map (covering the totality of the studied area) produced by the method described in (Idbraim
et al., 2009).

The average F-measureF corresponds to the mean, for each
class, of the F-measures obtained. To this end, for each the-
matic class, the best corresponding clusters (in terms of parti-
tions) were extracted. Then, we have computed: the percent-
age of false positives (denoted by f (p)), the percentage of false
negatives (denoted by f (n)) and the percentage of true positives
(denoted by t(p)). These measures are used to estimate the pre-
cision P and the recall R of the results obtained by using the
proposed method:

P =
t(p)

t(p) + f (p) and R =
t(p)

t(p) + f (n) (7)

For each experiment, we have then computed the geometrical
mean P of the precisions obtained and the geometrical mean R
of the recalls obtained. Finally, we have computed the mean F-
measure F which is the harmonic mean of the mean precision
and the mean recall:

F = 2 ·
P ·R

P + R
(8)

The computation of these class-specific indexes requires the
matching of classes of interest with clusters extracted by the un-
supervised classification approach. To this end, we have used
an automatic strategy, which consists of selecting the clusters
that maximize the overlapping with the corresponding class.

To assess the global relevance of the results, we have also
computed the Kappa index (Congalton, 1991) K , which is a
measure of global classification accuracy:

K =
Pr(a) − Pr(e)

1 − Pr(e)
(9)

where Pr(a) is the relative agreement among the observers, and
Pr(e) is the hypothetical probability of chance agreement. The
Kappa index takes values in [0, 1] and decreases as the classifi-
cation is in disagreement with the ground-truth map. Note that
the Kappa index is an agreement measure between two parti-
tions and thus does not require to “align” the clusters with the
reference classes.

To assess separately the accuracy of each thematic class, we
also provide (for each one of these classes) the precision P, the
recall R and their averages.

5. Results

This section presents the results obtained with the proposed
contextual approach in the context of the multi-temporal anal-
ysis of agronomical areas. The first sub-section describes the
study of the influence of the segmentation step on the obtained
classification results. The second sub-section proposes an ex-
haustive analysis of the interest of the different contextual at-
tributes for multi-temporal analysis. Finally, the third sub-
section presents an experimental study about the time complex-
ity.

5.1. Influence of the segmentation step

The graph represented in Figure 4 summarizes the accuracy
scores (mean F-measure F values) of the classification results
obtained as a function of the parameters of the segmentation al-
gorithm (the spatial radius hs and the range radius hr). For each
series of resulting segmentations, the classification is obtained
by using the radiometric mean of the regions to characterize the
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(a) (b) (c)

Figure 5: Results of the Mean-Shift segmentation algorithm carried out on an extract of the satellite image presented in Figure 2(a). (a) Extract of one image of the
series. (b) Segmentation result (hs = 3, hr = 3,M = 25). (c) Segmentation result (hs = 10, hr = 15,M = 25). Note that the boundaries of the regions are depicted in
white.

Figure 4: Influence of the parameters of segmentation (the spatial radius hs and
the range radius hr) on the classification results. The accuracy of the classifi-
cation results obtained is assessed using the mean F-measure F computed with
the land-cover reference map presented in Figure 3(b).

pixels through time. The best scores obtained (and thus, the
best configurations of parameters) correspond to the orange-red
area while the worst ones correspond to the green-blue area.
The large size of the orange-red area allows us to assess the
robustness of the approach to the segmentation step. As ref-
erence, the base-experiment ? obtained a F-measure score of
51.3% (corresponding to the green area), which is lower than
most of the scores obtained by using the radiometric mean of
the regions. For the remainder of this experimental study, the
configuration (hs = 10, hr = 15,M = 25) has then been kept.

In order to visually confirm the choice of this configuration,
Figure 5 illustrates different segmentation results obtained on
an extract of an image. One can note that the parameters config-
uration (hs = 3, hr = 3,M = 25) provides over-segmented re-
sults while the parameters configuration (hs = 10, hr = 15,M =

25) provides satisfactory results for the extraction of agricul-
tural areas.

5.2. Results analysis

Table 1 summarizes the F-measure values, the Kappa values
and the overall classification accuracy values obtained for the
experiments with several subsets of attributes. Experiment ?
gives the reference score obtained by a pixel-based classifica-
tion of the SITS. From this table, one can first note that these
baseline scores are quite high, demonstrating the relevance of
the temporal dimension for land-cover classification.

These experiments show that the radiometrical mean values
of the regions (FNIR, FR, FG, FB), as well as the smoothness and
the compactness of the regions (FS mooth, FComp), are the more
relevant features for the classification of this studied area. On
the contrary, the area feature FArea seems not relevant for this
dataset; a possible reason could be that each crop class contains
different sizes of fields. A similar observation can be made for
the elongation feature FElong. This being so, these observations
are not questioning the interest of the approach, since these spa-
tial characteristics (and others) could be used in other applica-
tion cases. In our case, the best result has been obtained with
the use of the radiometric mean of the regions combined with
the smoothness feature (Experiment 18).

In order to visually assess the results provided by the pro-
posed method, Figure 6(b) shows the best clustering result ob-
tained on sequences from 2007. We also provide in Figure 6(a)
the result provided by a naive fusion classification approach.
This approach performs by fusing (with a majority vote) the dif-
ferent clustering maps obtained independently for each image
of the series. A visual comparison between these two results
directly emphasizes the potential of using a pixel-enriched tem-
poral classification approach instead of a naive temporal fusion
one. Actually, considering the temporal dimension of the data
makes it possible to obtain more accurate classification results.

To separately assess the accuracy of each thematic class,
we also provide for the best clustering result obtained (Exper-
iment 18), the precision P, the recall R, the F-measure F as
well as their averages (see Table 2). For comparison purpose,

8



Table 1: Results of the experiments.

Ground truth Reference map

Experiment F K A F K A

? INIR, IR, IG, IB 69.6 61.9 74.2 51.3 44.2 56.0
1 INIR, IR, IG, IB, FComp. 70.5 60.9 73.7 50.8 43.7 55.3
2 INIR, IR, IG, IB, FS mooth. 69.1 59.7 72.5 51.5 45.2 56.1
3 INIR, IR, IG, IB, FS mooth., FComp. 72.0 59.1 73.6 51.1 44.8 54.4
4 INIR, IR, IG, IB, FElong. 63.2 52.0 68.6 45.7 37.4 51.1
5 INIR, IR, IG, IB, FElong., FComp. 63.2 49.5 67.0 46.0 36.3 50.9
6 INIR, IR, IG, IB, FElong., FS mooth. 62.9 49.5 67.5 46.3 36.2 50.7
7 INIR, IR, IG, IB, FElong., FS mooth., FComp. 64.6 49.3 68.3 46.4 36.1 50.6
8 INIR, IR, IG, IB, FArea 67.9 56.2 71.2 50.5 44.2 53.7
9 INIR, IR, IG, IB, FArea, FComp. 68.0 55.3 70.7 50.4 44.6 53.7
10 INIR, IR, IG, IB, FArea, FS mooth. 67.2 56.3 71.1 50.8 43.3 53.4
11 INIR, IR, IG, IB, FArea, FS mooth., FComp. 67.3 56.1 71.3 50.3 43.2 53.3
12 INIR, IR, IG, IB, FArea, FElong. 65.1 52.1 69.1 47.4 38.3 52.0
13 INIR, IR, IG, IB, FArea, FElong., FComp. 64.3 51.2 68.9 46.5 39.0 52.0
14 INIR, IR, IG, IB, FArea, FElong., FS mooth. 64.8 51.7 69.0 46.9 38.1 51.5
15 INIR, IR, IG, IB, FArea, FElong., FS mooth., FComp. 64.4 50.0 69.0 46.6 38.8 51.7
16 FNIR, FR, FG, FB 72.7 63.0 75.7 52.1 44.5 56.0
17 FNIR, FR, FG, FB, FComp. 70.1 58.2 73.4 50.8 45.6 55.7
18 FNIR, FR, FG, FB, FS mooth. 72.8 66.1 77.2 52.4 45.2 55.9
19 FNIR, FR, FG, FB, FS mooth., FComp. 71.1 60.9 72.8 50.2 45.2 55.7
20 FNIR, FR, FG, FB, FElong. 64.6 52.6 69.1 45.3 37.0 50.3
21 FNIR, FR, FG, FB, FElong., FComp. 65.0 52.5 68.9 45.3 37.0 50.4
22 FNIR, FR, FG, FB, FElong., FS mooth. 65.1 50.8 68.7 46.0 36.6 50.0
23 FNIR, FR, FG, FB, FElong., FS mooth., FComp. 65.0 48.4 67.8 45.4 36.1 49.6
24 FNIR, FR, FG, FB, FArea 67.9 53.9 69.5 50.6 44.0 54.7
25 FNIR, FR, FG, FB, FArea, FComp. 66.3 52.4 68.8 49.9 43.0 53.8
26 FNIR, FR, FG, FB, FArea, FS mooth. 66.7 52.3 69.4 50.3 43.8 54.0
27 FNIR, FR, FG, FB, FArea, FS mooth., FComp. 65.8 52.5 69.3 49.7 43.6 54.0
28 FNIR, FR, FG, FB, FArea, FElong. 65.1 52.8 68.7 47.8 39.1 52.4
29 FNIR, FR, FG, FB, FArea, FElong., FComp. 64.8 53.0 68.7 47.8 38.9 52.6
30 FNIR, FR, FG, FB, FArea, FElong., FS mooth. 64.6 51.8 67.9 47.2 38.3 51.8
31 FNIR, FR, FG, FB, FArea, FElong., FS mooth., FComp. 63.7 49.6 67.7 47.0 38.1 51.8

The scores that outperform the ones obtained with Experiment ? (i.e., the reference scores obtained by a pixel-based classification of the SITS) are shown in
boldface.

9



Table 2: Detailed results for Experiment 18.

Ground truth Reference map

Class Colour # (×103) P R F # (×103) P R F

corn 25 89,5 94,3 91,8 192 91,5 83,8 87,5
wheat 35 78,3 91,4 84,3 179 67,2 86,5 75,6
temp. meadow 6 28,3 59,3 38,3 104 34,7 64,9 45,2
fallow land 13 61,5 78,1 68,8 104 28,9 48,3 36,2
meadow 3 12,8 63,4 21,3 81 22,7 72,6 34,6
broad-leaved tree 1 79,4 91,2 84,9 77 58,8 95,0 72,6
wild land < 0.5 2,4 59,8 4,6 46 26,4 37,4 31,0
sunflower 5 54,4 63,6 58,6 45 48,7 58,4 53,1
dense housing < 0.5 0,9 12,5 1,7 36 31,3 58,7 40,8
housing n/a 33 15,2 56,1 23,9
barley 2 9,2 57,5 15,9 27 10,4 50,5 17,3
soybean 9 77,6 69,1 73,1 23 46,5 65,6 54,4
rape 3 15,4 68,8 25,2 21 18,9 91,1 31,4
corn for silage 7 83,6 99,1 90,7 9 30,6 95,0 46,2
lake 6 100,0 98,9 99,5 9 86,5 96,0 91,0
non-irrigated corn n/a 6 3,1 18,0 5,2
pea n/a 2 1,9 43,4 3,6
sorghum II n/a 2 5,0 79,4 9,4
eucalyptus < 0.5 18,2 99,5 30,8 1 1,7 9,8 2,9
conifer n/a 1 1,3 9,8 2,3
sorghum < 0.5 4,1 70,2 7,7 1 1,4 33,7 2,6
specific surface n/a < 0.5 1,4 39,2 2,6
water n/a < 0.5 2,1 81,5 4,1
mineral surface n/a < 0.5 0,9 88,8 1,9
gravel pit n/a < 0.5 1,1 99,1 2,1
poplar tree < 0.5 8,3 100,0 15,3 < 0.5 0,4 25,0 0,8

Average n/a 64,5 83,6 72,8 n/a 42,1 69,2 52,4

The symbol n/a means that the considered value is either not available or not relevant. The symbol # corresponds to the cardinal (number of pixels) of the thematic
class (we recall that each image is composed of 1, 000 × 1, 000 pixels).
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(a) (b)

Figure 6: Clustering maps obtained on the satellite image time series. (a) Result obtained with a naive fusion approach. (b) Result obtained with the proposed
method (Experiment 18). Note that these maps have been recolored according to the corresponding land cover reference map (Figure 3(b)).

the confusion matrix obtained by comparing this result to the
considered land cover reference map is provided in Table 3.
From these two tables, one can note that most of the major
considered temporal classes have been correctly extracted by
the proposed approach. Table 2 highlights that the proposed
approach provides results with high values of precision, re-
call, and F-measure for most of the extracted classes. For in-
stance these values reach approximatively 85% for the corn
and wheat classes which are the most represented ones. Fur-
thermore, the confusion matrix obtained shows that these two
temporal classes are mainly regrouped in two clusters by the
K-means algorithm. The same observation can be given for
the broad-leaved tree class. Such comparisons enable to assess
the accuracy of the classification results provided by the pro-
posed pixel-enriched approach. Note that, as the proposed ap-
proach provides a clustering of the sensed area, no one-to-one
mapping between thematic classes and clusters is guaranteed.
In this way, it is not possible to provide statistical accuracies
from this matrix. For instance, cluster 8 is predominantly rep-
resenting the wheat class, but also represents the barley and rape
classes. In fact, this cluster represents the broader class of win-
ter crops (i.e., of higher semantic level), precisely composed of
these three classes.

Moreover, Figure 7 focuses on a restricted area in order to
visualize the differences between the pixel-based approach and
the proposed pixel-enriched approach. One can see that, in the
details, the land-cover map obtained with the proposed pixel-
enriched approach is spatially more consistent and regular than
the result obtained with the pixel-based approach. Furthermore,
one can note that the orange and yellow classes, correspond-

ing respectively to corn and wheat crop fields, as well as the
dark green class corresponding to hardwoods, are well sepa-
rated. More generally, these results demonstrate visually the
relevance of the proposed pixel-enriched approach compared to
the pixel-based analysis.

Finally, in order to statistically study the correlation of the
considered features, a correlation matrix between these features
has been computed (Table 4). To this end, all pixels of all im-
ages were characterized by the spatial features (computed on
the segmentation (hs = 10, hr = 15,M = 25)). Not surpris-
ingly, the radiometric features FR, FG and FB are highly corre-
lated (due to the similar reflectances of usual sensed objects in
these radiometric bands). This matrix also shows that the spa-
tial features are generally not correlated, except for the couple
(FElong., FComp.).

5.3. Computation time study
As it is quite difficult to provide a relevant theoretical com-

plexity study of the proposed methodology, we present here-
after an experimental evaluation of the complexity.

Table 5 provides the run-time and the memory usages for
the processing of the images contained in the studied dataset
sensed over the 2007 cultural year. Experiments have been run
on an Intel® Core™2 Quad running at 2.4 GHz with 8 GB of
RAM. The algorithms have been implemented using the Java
programming language and different threading strategies. From
Table 5, one can note that the proposed approach makes it pos-
sible to classify a whole HSR SITS in less than 15 minutes.
Furthermore the memory consumption remains tractable since
it does not exceed 2.3 GB when processing a dataset composed
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Table 3: Confusion matrix obtained by comparing the result of Experiment 18 to the considered land-cover reference map (Figure 3(b)).

Class c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 card

corn 7 84 4 4 - 1 - - - - 19 %
wheat - - 2 1 2 1 6 2 87 - 18 %
temporary meadow - - 15 - 3 3 53 12 14 - 10 %
fallow land - - 18 2 10 4 34 17 14 - 10 %
meadow - - 35 - 2 23 31 6 2 - 8 %
broad-leaved tree - - 4 - - 96 - - - - 8 %
wild land - - 29 - - 42 13 14 1 - 5 %
sunflower 7 7 11 58 10 1 1 1 3 - 4 %
dense housing - - 15 15 53 2 6 4 3 2 4 %
housing - - 29 2 32 11 17 6 3 - 3 %
barley - - 2 9 4 - 8 - 75 - 3 %
soybean 66 23 6 3 2 - - - - - 2 %
rape - - 1 - 1 - 3 - 95 - 2 %
corn for sillage - 47 2 49 - - - - - - 1 %
lake - - 3 - 1 - - - - 96 1 %
non-irrigated corn 13 20 28 3 5 13 1 17 - - 1 %

The thematic classes covering less than one percent of the sensed surface are not represented in the matrix.

Table 4: Correlation matrix of the features corresponding to the segmentation parameters (hs = 10, hr = 15,M = 25)).

Feature FNIR FR FG FB FArea FElong. FS mooth. FComp.

FNIR 1 -0.21 -0.05 -0.15 -0.04 -0.2 -0.07 -0.21
FR 1 0.96 0.93 -0.06 0.24 -0.05 0.11
FG 1 0.96 -0.04 0.23 -0.04 0.12
FB 1 -0.04 0.23 -0.04 0.12
FArea 1 -0.52 0.34 -0.33
FElong. 1 -0.12 0.83
FS mooth. 1 0.02
FComp. 1

Table 5: Run-time and memory usage for the processing of the considered dataset.

Step Runtime Memory (RAM)

A. Segmentation of the images 9 min 21 s 1.1 GB
B. Characterisation of the regions 2 min 18 s 2.3 GB
C. Construction of the vector images n/a 2.3 GB
D. Construction of the time series n/a 2.3 GB
E. Classification of the time series 1 min 3 s 1.6 GB

Total ≈ 13 min ≈ 2.3 GB

The symbol n/a means that the considered run-time is not significant.
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(a) (b)

(c) (d)

Figure 7: Extract of the results provided by the proposed method carried out
on the satellite image time series. (a) Zoom on the considered ground surface
in one image of the series. (b) Zoom on the land cover reference map (Fig-
ure 3(b)). (c) Zoom on the clustering map obtained with Experiment ?. (d)
Zoom on the clustering map obtained with Experiment 18.

of 15 images of 1, 000 × 1, 000 pixels. For comparison pur-
pose, the classification of the same HSR SITS, without consid-
ering the spatial context of the pixels (Experiment ?), requires
less than 2 minutes.

6. Conclusion

This article has introduced a novel approach for the analysis
of satellite image time series. The originality of this approach
lies in its consideration of spatial relationships between pixels
in each remotely sensed image. We have seen that character-
izing pixels with contextual features computed on segments,
allows us to enhance the classification process. This method-
ology has been carried out on a SITS composed of 15 HSR im-
ages. The different classification results obtained have shown
the relevance of this approach in the context of the analysis of
agronomical areas.

This hybrid paradigm combines the possibilities offered by
the (per-pixel) multi-temporal analysis and the relevance of the
(single-image) object-based frameworks for spatio-temporal
analysis. The coming pair of Sentinel-2 satellites will provide
at the same time images with different spatial and radiometric
resolutions (four bands at 10 m, six bands at 20 m and three
bands at 60 m) at a high temporal frequency. In this context,
the methodology proposed in this article provides a first trend
to deal with such data.

We believe this work opens up a number of research di-
rections. Firstly, the choice of the considered spatial features in

the classification process has to be deeply studied. For instance,
textural and topological features could be used. Secondly, we
also plan to validate the proposed methodology by using other
segmentation strategies. For instance, it has been proposed
in (Kurtz et al., 2012) a new segmentation approach enabling
to decompose the scene at different semantic levels. Such an
approach could be extended to SITS to analyze the scene in a
multi-temporal/multi-level fashion. We also plan to automate
the choice of the parameters of segmentation. Indeed, different
approaches (supervised or unsupervised) have been proposed
to evaluate the quality of a segmentation (Clinton et al., 2010;
Özdemir et al., 2010) and thus to select the “best” segmentation
result relatively to a particular partitioning task. Finally, the
higher the spatial and temporal resolution, the more relevant
our approach will be. In this way, the next step of this study
could consists of applying this paradigm to a series of Multi-
Spectral/Panchromatic images couples. The spatial accuracy of
Panchromatic images will help to preserve the fine details and
structures.
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