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Satellite Image Time Series Analysis
under Time Warping

François Petitjean, Jordi Inglada and Pierre Gançarski

Abstract—Satellite Image Time Series are becoming increas-
ingly available and will continue to do so in the coming years
thanks to the launch of space missions which aim at providing a
coverage of the Earth every few days with high spatial resolution.
In the case of optical imagery, it will be possible to produce
land use and cover change maps with detailed nomenclatures.
However, due to meteorological phenomena, such as clouds, these
time series will become irregular in terms of temporal sampling
and one will need to compare time series with different lengths. In
this paper we present an approach to image time series analysis
which is able to deal with irregularly sampled series and which
also allows the comparison of pairs of time series where each
element of the pair has a different number of samples. We present
the Dynamic Time Warping from a theoretical point of view and
illustrate its capabilities with two applications to real time series.

Index Terms—Dynamic Time Warping, Satellite Image Time
Series, Classification, Clustering, Remote Sensing.

I. INTRODUCTION

SATELLITE Image Time Series (SITS, for short) are a
precious resource for Earth monitoring. Current time se-

ries have either high temporal resolution (SPOT-VEGETATION,
MODIS) or high spatial resolution (LANDSAT). In the coming
years, both high temporal and high spatial resolution SITS are
going to be widely available thanks to the ESA’s SENTINEL
program. Nowadays, satellites as the Taiwanese FORMOSAT-2
are already providing similar data, but with a limited coverage
of the Earth’s surface and with only four spectral bands.

In order to efficiently use the huge amounts of data that
will be produced by, for instance, SENTINEL-2 (global cover
every five days with 10 m to 60 m resolution and 13 spectral
bands), new methods for SITS analysis have to be developed.
Indeed, the following issues will have to be addressed:

a) Reference data: In the case where a global land-cover
has to be updated every few days or weeks, one can not assume
that reference data – ground truth, training samples – are going
to be available. In order to cope with this lack of data, methods
able to operate in an unsupervised way or using reference data
from, say, previous years, are needed.
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b) Irregular sampling: When only several images per
year are available over a given site, the constraints on the
stability of temporal sampling frequency can be weakened.
For instance, if one image per season is available, a jitter
of a few weeks on the sampling period will have a very
low impact on the results. However, when several images
per month are available – and therefore required for new
applications – classical multi-temporal methods will suffer
from low regularity of the sampling at the scale of days.
Therefore, only methods that deal with irregular temporal
sampling will be able to fully exploit the available acquisitions.

c) Pseudo-periodic phenomena: Many phenomena of
interest – vegetation cycles, for instance – have a periodic
behavior which can be slightly modulated by weather artifacts.
These modulations result in distortions of canonical temporal
profiles of, say NDVI or other physical variables. This kind
of phenomena are the dual of the irregular sampling issue
presented above: it is not the sensor, but the observed objects
that have an irregular temporal behavior. Therefore, methods
that have some kind of invariance to temporal stretching or
dilation are of major interest.

A quick review of the available literature on SITS analysis
(Section II-A) shows a lack of existing methods responding to
the three issues stated above.

In this paper we present the Dynamic Time Warping (DTW)
similarity measure [1], [2] and use it on real SITS in order
to show how the above-mentioned problems can be dealt
with. Although we focus our examples on optical SITS, the
methods presented here can also be applied to SAR images.
Since DTW is sensitive to spiky noise, SAR images should
be appropriately filtered to reduce speckle noise before using
them in the framework presented here.

We previously made DTW applicable to data mining in [3].
In the current contribution, we show how DTW can be
useful for specific problems raised by SITS and present some
specific adaptations of the algorithm needed to deal with Earth
observation data.

The paper is organized as follows: In Section II we start by
presenting an overview of the state of the art, first focusing
on the main SITS analysis methods and then focusing on the
comparison of temporal radiometric behaviors and associated
constraints. Section III presents the Dynamic Time Warping
similarity measure in detail. Section IV details the choices
and adaptations that were made for the application of DTW
to remote sensing. Section V describes the data sets used in our
experiments. Several interesting results of the use of DTW for
SITS analysis are presented in Section VI. Finally we conclude
and present some future works in Section VII.
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II. STATE OF THE ART

This state of the art is divided into two parts. Subsec-
tion II-A presents the main kinds of methods for SITS analysis
and then justify the choice made in this paper: focusing on
measures for the comparison of temporal profiles. Subsec-
tion II-B presents several measures for time series (temporal
profiles) comparison and makes a critical analysis of the
presented measures in order to introduce the Dynamic Time
Warping similarity measure, on which we focus in this paper,
in the next section.

A. Satellite Image Time Series analysis

Notations: Throughout this section, let t1, · · · , tn respec-
tively denote image 1, · · · , image n. Let “<” denote the strict
total order (induced by the time) on the images. Let f be a
binary function (of arity two) taking two images as parameters
and returning one image. The f function is used to illustrate
the behavior of bi-temporal dedicated methods.

Typology: Beyond the way the methods work by them-
selves, they can be classified depending on the way they use
the time dimension of the data. For example, given a SITS,
the use of the time structure of the data is very different from
image differencing to frequency analysis. The first one only
uses the ordering induced by the time on couples of images
while the second one uses the whole ordering of the series.
The aim of this typology is to describe the different levels of
the time structuring. We voluntarily do not separate bi-date and
multi-date methods (associated to the analysis of abrupt/long-
term changes), since this article aims at defining a descriptor
of time series, which could be used for both abrupt changes
and long-term changes analysis.

The type of data we are considering in this work, i.e., SITS,
is highly structured, both spatially and temporally. The spatial
structure of the data is generally used as the basis for the
comparison between different values: the coordinates (x, y) of
pixels in the images identify each sensed area through time.

Where the data structuring usually differs, is in the use of
the temporal information, i.e., in the use of the sensing time or
of the sequencing. Depending on the method used, the weight
of the temporal dimension can be very different and can occur
at different levels.
We bring out three main uses of the time dimension:

1) Time as identifier: time is only used to identify the
information, i.e., there is no ordering between the images
of the series;

2) Pairwise time ordering: time is used to structure the
images, pairwise;

3) Time ordering the sequence: time is used to structure the
image series.

This state of the art will detail each one of these three
categories. Each category will be first presented in a general
way, then methods belonging to it will be presented and finally,
the category will be analyzed in the light of presented methods.
For a detailed survey of these methods, the reader should refer
to [4], [5].

1) Time as an identifier: The time dimension is here used
as an attribute identifier. Consequently, each sensed image
is used as an additional attribute. Intuitively, this use of the
time dimension usually consists of concatenating the different
images into one single image with many attributes. This
category includes:

a) Data linear transformation: This kind of methods is
mainly based on the theory of statistics. It includes meth-
ods that consist of statistically transforming the data with,
for example, Principal Component Analysis (PCA) or with
Maximum Auto-correlation Factor (MAF) (see [6] for an
application of these two methods). These methods are simple
to use and generally give interesting results. However, even if
a few attempts have been made to compose these methods in
order to use the time dimension in some way, (see [7] for an
example of a hierarchical combination of these methods), the
ordering induced by the temporal dimension cannot be taken
into account, especially when dealing with a SITS.

b) Classification: This kind of methods consists of ap-
plying a classification algorithm on the concatenated image1.
Several attempts have been made using the K-MEANS algo-
rithm or with the Expectation Maximization algorithm [8].
However, as the data is somehow untemporalized before being
processed, no temporally structured result can be obtained.

c) Change detection methods based on classification
comparison: These methods consist of independently classi-
fying every image and combining and/or fusing them in order
to produce a single classification. These methods have the
advantage of being applicable to two or more images and do
not require comparable radiometric levels between the images.
For example, no relative radiometric normalization (RRN) is
required. Examples of applications to two images [9], to four
images [10], or even to 16 images [11] are given in the
literature. However, the time dimension is not really taken
into account since modifying the order of the images has no
effect on the result.

As a conclusion on these methods, although they exploit
the whole data, they are not able to identify specific temporal
behaviors. This kind of methods is, in essence, unable to ex-
tract and/or characterize temporal behaviors. Admittedly, some
change areas can be isolated from others by these methods, but
only because these areas have a different frequency of events;
shuffling the attributes will have no effect on the results. In
this way, although these methods are simple to use and are
obviously tolerant to irregular sampling, they are not able to
make a consistent temporal analysis of SITS.

2) Pairwise time ordering: At a higher level of temporal
structuring, some methods (originally bi-temporal ones) use
the temporal information as a partial ordering, i.e., as several
“previous/next” orders:

t1 < t2 , · · · , tn−1 < tn (1)

This use of the time dimension usually consists of using the
temporal information between couples of images, i.e., pair-
wise. In this way, this kind of methods was initially devoted

1The Euclidean distance is used here to compare the time series. We will
return to this point in Section II-B4
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to bi-temporal analysis but was extended to multi-temporal
analysis by composition of these methods. These methods
usually require comparable values between the images. They
include:

a) Difference/ratio/combination: This type of methods
consists of combining the values of the image at time t and
those at time (t − 1) in order reveal the intrinsic temporal
structure of the data. The combination operator can be as
simple as a subtraction [12]–[14], a division [15], [16], or
more sophisticated [17], [18]. The resulting combined image
is then usually thresholded or classified, in order to map (and
sometimes characterize) the change areas. These methods are
however too simple to understand the specificity of the time
dimension and are only applicable to two images at the same
time. Thus, in order to handle SITS, these methods have to
be applied several times (e.g., twelve images combined in one
in [19]), which leads to hardly understandable results.

b) Change Vector Analysis: This method is designed for
and limited to bi-temporal analysis. It consists of building a
vector from two multi-band values (one before and one after
the change) in a multi-dimensional space. The study of both
the norm and the angle of this vector gives an information
on the type of the change and of its intensity. Many studies
use this method to map and characterize change areas (e.g.,
[20]–[22]).

c) Linear Regression: This method considers that the
pixel value at time t is linearly correlated to the pixel value
at time (t − 1). The parameters of the regression (e.g., the
residual) are studied to map and characterize the change. Many
works are using this method [23]–[25], but it was shown that
results are generally not better than image differencing [26].

Using this pairwise ordering makes it possible to extract a
temporal information from pairs of images. However, these
methods are per se designed to handle pairs of images. In this
way, in order to handle SITS, they have to be applied several
times (usually in a tournament scheme) such as:

f (f (img1, img2) , f (img3, img4))
or f (f (f (img1, img2) , img3) , img4)

(2)

This principle has however a major drawback: when applying
the method on (t1, t2) and then on (t3, t4), in order to handle
a SITS of length four, the ordering between t2 and t3 is not
directly used. In addition, the composition of these methods
in order to analyze SITS proves to be risky, since the results
depend on the properties of the methods (e.g., associativity,
reflexivity), and are thus sensitive to ordering schemes. Glob-
ally, the combination of these bi-temporal dedicated methods,
appears more as an ad hoc technique than as a method able
to handle whole SITS.

3) Time ordering the sequence: Then, at a higher level of
time structuring, some methods are using the whole ordering
induced by the temporal information and are studying the
evolution of an area (x, y) throughout the image series. The
structuring is here, even more important since the order is

generalized2 to the series as:

(t1 < t2) ∧ (t2 < t3) ∧ · · · ∧ (tn−1 < tn) (3)
⇔ t1 < t2 < · · · < tn−1 < tn (4)

This additional constraint enables the mining of structured
information and the analysis of evolution behaviors from the
image series. It includes:

a) Frequent pattern mining: This method extracts fre-
quent sub-sequences of radiometric evolutions. It has the
advantage of being robust to noise and extracting meaningful
patterns, but it generates thousands of patterns which are
difficult to filter in order to understand changes that occurred
over an area. Moreover, a discretization step is required in
order to reduce the size of the search space. This step can be
critical because the mining step highly depends on it. Several
studies have been published [27]–[29].

b) Frequency analysis: This type of methods uses a
Fourier or a wavelet decomposition of the radiometric time
series [30]–[32]. These methods can handle time series and
are robust. However, they require a regular sampling of the
time series and relatively time series.

All of these methods are using the ordering of the sequence.
Then, frequency based methods add a constraint on the tem-
poral sampling: data must be regularly sensed, i.e., the time
between two acquisitions must be constant over the image time
series. Remote sensing makes this constraint difficult to keep,
since the acquisitions depend on several factors (operational,
meteorological, etc.). Thus, releasing the constraint on the
regular sampling, i.e., having the same time between two
successive images throughout the series, the use of the total
order on the sensed values appears to be consistent for the
analysis of evolution behaviors of each sensed area over the
satellite image time series.

Conclusion: The above discussion highlights that there is a
need for global analysis methods, in which each radiometric
evolution would be analyzed and compared to others. In
this paper, we propose to compare/classify these evolution
behaviors/trends. Therefore, we consider each pixel value of
the SITS as an element of a sequence describing the evolution
of a sensed area. The next section describes different similarity
measures that makes it possible to exploit the temporal struc-
turing of SITS, in order to compare radiometric evolutions.

B. Comparing temporal profiles

All methods used for time series analysis actually include
a comparison of the data by using distances. Whatever the
method is used, the core of the process generally consists
of comparing data in order to estimate a (dis)similarity. The
distance tool provides an estimation of this similarity. It is a
critical tool, on which the results of analysis methods heavily
rely. When the data is temporal, the choice of the distance
is crucial since it completely defines the way of tackling the
temporality of the data. In this way, two sequences should
be close if they represent similar evolution behaviors. Thus,

2This order is a total order on the set of the images.
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a distance could be appropriate in order to compare speech
signals, but not for remote sensing, and conversely.

This subsection presents different similarity measures for
sequences (i.e., temporal profiles of radiometric values). As we
focus on the comparison of temporal profiles of evolution, this
state of the art should be read in the light of several objectives
for the analysis of SITS:
• using all of the available sensed values;
• being applicable to numerical values;
• being able to apprehend temporal behaviors (e.g., shifts,

distortions);
• being applicable to irregularly sensed image series (irreg-

ular temporal sampling);
• being parameter-free;
• yielding results which can be easily interpreted.
Notations: Let A = 〈a1, . . . , aT 〉 and B = 〈b1, . . . , bT 〉 be

two sequences, and let δ be a distance between two elements
(or coordinates) of sequences (usually the L1 distance of the
L2 distance).

1) Euclidean distance: This distance is commonly accepted
as the simplest distance between sequences. The distance
between A and B is defined by:

D(A,B) =
√
δ(a1, b1)2 + · · ·+ δ(aT , bT )2 (5)

This distance does not correspond to the common understand-
ing of what a sequence really is, and cannot capture flexible
similarities. For example, X = 〈a, b, a, a〉 and Y = 〈a, a, b, a〉
are different according to this distance even though they
represent similar evolution behaviors.

2) Compression-Based Dissimilarity Measure: This is a
measure introduced in [33], based on the theory of the
Kolmogorov complexity [34]. The authors suggest to use
this principle to define a new similarity measure based on
compression as:

D(A,B) =
| compress(A.B) |

| compress(A) | + | compress(B) |
(6)

with A.B be the concatenation of A and B, and with
| compress(. . . ) | be the size of the compressed file. This
measure is, however, strongly dependent on the compression
algorithm chosen. Furthermore, results can be difficult to
interpret, since the compression algorithm works as a black
box. Finally, this technique is designed for relatively long
sequences, without which the compression algorithm will be
underused.

3) Levenshtein distance: The Levenshtein distance (or edit
distance) [35] formalizes the notion of distance between two
symbol strings, by focusing on transforming (or editing) one
string into the other by a series of edit operations on individual
symbols. The allowed edit operations are insertion, deletion
and replacement of a symbol. It has the advantage of under-
standing that 〈a, b, a〉 is close to 〈a, a, b, a〉 with a difference
of an insertion or a deletion of one ’a’. This distance is, in
this way, able to handle temporal data. However, it presents
two main drawbacks: firstly, it is not applicable to numerical
values and secondly, it requires the definition of the costs for
the insertion/deletion of symbols, and for the transformation
of each symbol to another one.

4) Longest Common Sub-Sequence: (LCSS) was first in-
troduced to find the longest common sub-sequence between
two strings. This method was extended in [36] to a similarity
measure between two numerical sequences. This measure has
two main shortcomings. Firstly, it requires the definition of
the meaning of “common” between values in order to count
the length of the longest sub-sequence. Secondly, this method
aims at finding a sub-sequence and it thus forgets sensed
values. Even if this property could be interesting in order to
skip cloudy values, several meaningful sensed values could be
skipped, leading to a meaningless result.

Critical analysis:
a) From the application point of view: Even if there

is a need for a comparison method of temporal profiles of
evolution, most of the methods presented above are not well
suited to remote sensing. The Euclidean distance does not take
into account the temporality of the data and is therefore not
relevant to the analysis of time series whatever the applica-
tion is. Measures based on compression are computationally
expensive, which make them unusable in remote sensing.
Moreover, their results are difficult to interpret, and are hardly
applicable to short time series. On the other hand, methods
based on the edit distance are more interesting since they
exploit the temporality of the data, and capture temporal
behaviors. However, the Levenshtein distance is intended for
symbolic sequences and requires a similarity matrix defined
by an expert, which prevents its application to remote sensing.
LCSS permits to find common sub-sequences. Two problems
are raised for its application to remote sensing. Firstly, the
definition of “common” should be established. Secondly, and
this problem is more objectionable, this distance is calculated
on a subset of the data (sub-sequences), reducing its relevance
since the whole data set is not used.

b) From the theoretical point of view: This article is
focused on the analysis of a whole SITS with distance-based
methods. Most distance-based analysis methods require to
be able to compute an average consistently to the distance
used (e.g., K-MEANS). Among all presented similarity mea-
sures, only the Euclidean distance has an associated averaging
method. This point further limits the applicability of other
measures to remote sensing and more generally to the study
of temporal data.

III. DYNAMIC TIME WARPING

This section presents the Dynamic Time Warping similarity
measure, which makes it possible to analyze the temporal
nature of the whole data set (without skipping any values).
For remote sensing, we will see that DTW can exploit the
temporal distortions and compare shifted or distorted evolution
profiles and whose time sampling is irregular, thanks to the
optimal alignment of radiometric profiles. Furthermore, DTW
is parameter free, which makes it match the several objectives
given in the previous section.

Dynamic Time Warping (DTW) is based on the Levenshtein
distance and was introduced in [1], [2], with applications to
speech recognition. DTW is able to find the optimal global3

3Any of the values of the two sequences can be skipped.
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t

Fig. 1. Two 1D sequences aligned with Dynamic Time Warping. Coordinates
of the top and bottom sequences have been respectively computed by cos(t)
and cos(t + α). For visualization purposes, the top sequence is drawn
vertically shifted.

alignment between two sequences and is probably the most
commonly used measure to quantify the dissimilarity between
sequences [37]–[41]. It also provides an overall real number
that quantifies the similarity between the two sequences. An
example of DTW-alignment of two sequences is presented in
Figure 1: it shows the alignment of points taken from two
sinusoids, one being slightly shifted in time. The numerical
result computed by DTW is the sum of the heights4 of the
associations. Alignments at both extremities on Figure 1 show
that DTW is able to correctly re-align one sequence with the
other, a process which, in this case, highlights similarities that
the Euclidean distance is unable to capture.

DTW captures flexible similarities by aligning the coordi-
nates inside both sequences (each element of the first sequence
is linked to (at least) one element of the second sequence). The
cost of the optimal alignment can be recursively computed by:

D(Ai, Bj) = δ(ai, bj) + min

 D( Ai−1 , Bj−1 ),
D( Ai , Bj−1 ),
D( Ai−1 , Bj )

(7)

where Ai is the sub-sequence 〈a1, . . . , ai〉. The overall simi-
larity is given by D(A|A|, B|B|).

Unfortunately, a direct implementation of this recursive
definition leads to an algorithm that has exponential cost in
time. Fortunately, the fact that the overall problem exhibits
overlapping sub-problems (see Figure 2) allows for the memo-
ization of partial results in a matrix which makes the minimal
weight coupling computation a process that costs |A| × |B|
basic operations. This measure has thus a time and a space
complexity of Θ(|A| × |B|)5.

The algorithm presented in Figure I details the computation
of DTW. Given two sequences A and B of lengths S and T
respectively (S = |A|, T = |B|), this algorithm computes the
score of the alignment and comparison of A and B. It uses

4In fact, the distance δ(ai, bj) computed in Equation 7 is the distance
between two coordinates without considering the time distance between them.

5Note that the space complexity can be reduced to a Θ (min (|A|, |B|)),
since only the previous and the current rows are necessary for the computation.
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Fig. 2. Call tree of the function detailed in Equation 7. Three groups are
highlighted and represent the same calls. This is a memoization example.

TABLE I
DTW ALGORITHM

Require: A = 〈a1, . . . , aS〉
Require: B = 〈b1, . . . , bT 〉
Let δ be a distance between coordinates of sequences
Let m[S, T ] be a cost matrix
m[1, 1]← δ(a1, b1)

for i← 2 to S do
m[i, 1]← m[i− 1, 1] + δ(ai, b1)

end for
for j ← 2 to T do
m[1, j]← m[1, j − 1] + δ(a1, bj)

end for

for i← 2 to S do
for j ← 2 to T do

m[i, j]← δ(ai, bj) +min

m[i− 1 , j ]
m[ i , j − 1]
m[i− 1 , j − 1]

end for
end for
return m[S, T ]

the dynamic programming principle to allow the memoization
of overlapping sub-problems in a S × T matrix. In this way,
the algorithm consists at first of initializing the first column
and the first row of the matrix. Then, the matrix is computed
from left to right and from top to bottom. Each element of the
matrix is computed by using the smallest score from the left
element, the upper element and the diagonal one. Once the
matrix is entirely computed, the last element at bottom right
gives the score of the best alignment of the two sequences.
An example of a result matrix computed with DTW as well
as its corresponding alignment is given in Figure 3.

DTW allows to find the best global alignment between two
numerical sequences. Providing the cost of this alignment,
DTW is generally used as a dissimilarity measure between two
sequences. DTW appears thus to be a time-designed similarity
measure, able to gather locally time-distorted sequences with
time shifts and, more generally, local time distortions.

Finally, we previously introduced an associated averaging
method (DBA) in [3], which makes it applicable to most
distance-based analysis methods. Furthermore, this averaging
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(a)

t

(b)

Fig. 3. Example of the matrix computed by DTW. (a) the matrix and the warping path computed by DTW. (b) the resulting alignment of the two sequences.

method provides a condensed representation of the results that
can be used for their interpretation by the expert.

IV. DYNAMIC TIME WARPING FOR REMOTE SENSING

The previous subsection detailed the original definition of
DTW. However, its application to remote sensing requires to
make several choices and adaptations of the original method.
In this subsection, three points will be detailed:
A. the extension of DTW to multi-dimensional time series,

i.e., multi-spectral radiometric profiles of evolution;
B. the modification of DTW in order to avoid inconsistent

temporal distortions, e.g., forbidding the association of
winter sensed values with summer ones;

C. the handling cloud-contaminated images in the construc-
tion of the sequences.

A. DTW vs multi-dimensional sequences

The original definition of Dynamic Time Warping is devoted
to the study of 1D-signals (e.g., speech signals), i.e., where
each element of the sequence is described in a one-dimensional
space. However, in the analysis of satellite image time series,
each element of the sequences corresponds to a multi-spectral
pixel, i.e., a multi-dimensional vector. In this way, DTW has
to be modified in order to handle this kind of data. There are
actually two main ways of comparing two multi-dimensional
sequences with DTW:
• computing DTW B times, one time per dimension (i.e.,

per band);
• using a B-dimensional δ in the computation of DTW.

The first solution consists of considering that the radiometric
series is composed of B one-dimensional series, one per band.
Then, in order to compare the two radiometric series, DTW

provides the cost of the alignment of each band separately, and
the B scores are then merged (by averaging, for instance). In
this way, DTW will align every band separately, leading to B
(possibly different) alignments of the two multi-dimensional
sequences. The information about the synchronicity of the B
values composing a pixel is thus lost.

The second solution consists of considering that the ra-
diometric series is composed of a single series of N multi-
dimensional elements. In this way, a single alignment of the
two sequences is made. To this end, the cost function δ has to
be able to compare vectors of values. Practically, the Euclidean
distance can be used to compare the vectors. This solution
keeps the information on the synchronicity of the B values
composing a pixel (sensed vector of values): the pixel remains
atomic.

The second solution appears to better fit the analysis of
radiometric series. Actually, to distinguish the several land
cover states, the set of the B values sensed at the same time
is required. The first solution would only be interesting if the
behavior of the sequences in every band was independent; if
the synchronicity of the B values was not required. In this
way, the first solution would be adapted to sensed areas were
the B are representing uncorrelated phenomenons, which is
rarely the case in remote sensing.

B. Avoiding inconsistent temporal distortions

DTW makes it possible to align elements on the “length”
of the distortions/shifts. This ability is very useful to be
sufficiently robust and flexible in order to handle satellite
image time series. However, the expert might want to introduce
his/her knowledge of the observed temporal phenology. For
example, the expert might want to guarantee that summer-crop
are not aligned with winter ones, or that values sensed with
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a time delay of more than two months should not be aligned
together.

Constraints on the alignments have actually already been
studied. However, contrary to our case, these constraints aimed
at speeding up the computation of DTW. They consist of
limiting the search of the warping path in a subset of the matrix
called warping window. The objective is to limit the search
space in order to decrease the computational complexity. The
idea is to prevent the warping path from straying away from
the diagonal of the matrix. For instance, the warping path can
be limited to a certain band around the diagonal of the matrix
named Sakoe-Chiba band [2]. Another example corresponds
to a warping window shaped as a parallelogram and named
Itakura parallelogram [42], enabling more distortions in the
middle of the sequences than on the extremities. These global
constraints on the search of the warping path are actually
limiting the alignments, by preventing an alignment of two
elements that are too distant. Their aim is to decrease the
computational complexity and the constrain on the alignments
is the way of doing it. We take here the opposite direction:
we introduce some constrains in order to avoid inconsistent
temporal distortions, and the decrease of the computational
complexity is a bonus.

These global constraints are however not suitable to SITS
analysis, since the data are irregularly sampled. For example,
the Sakoe-Chiba band works by removing all matrix elements
that are too distant from the diagonal: the matrix element (i, j)
cannot be part of the warping path if |i − j| > w (with w
be the width of the band). As a result, the ith element of
the first sequence cannot be linked to the jth element of the
second sequence if they are more than w elements apart. As
a consequence, this constraint would only make sense if the
elements of the sequences are regularly sampled; the number
of elements would then have a temporal meaning, since w
elements would correspond to a time delay of w times the
sampling frequency. In the case of SITS, however, limiting
the warping window to all elements (i, j) distant of less
than w elements would have no temporal meaning, since two
consecutive elements (i.e., corresponding to two consecutive
sensed images) could be sensed with a time delay of, for
instance, one week, one month, or one year. Thus, given a
maximum time delay ∆t, we propose to limit the scope of the
matrix to all elements (i, j) fulfilling:

DATEDIFF ( DATE (i) , DATE (j) ) < ∆t (8)

where DATE is a function returning respectively the date of
the ith image of the first sequence and the date of the jth

image of the second sequence, and DATEDIFF is a function
returning the elapsed time between two dates.

Moreover, note that this constraint on the warping path
should be chosen in order to ensure that the warping path
exists, i.e., that the warping window is composed of a single
part. Finally, this maximum time delay ∆t could be variable,
in order to match more complex knowledge about the observed
temporal phenology.

In practice, during the computation of every (i, j) element
of the matrix, the condition presented in Equation 8 has to
be evaluated beforehand: if the condition is true, the classic

procedure remains unchanged, otherwise the value of the
matrix can be set to +∞. This procedure corresponds to a
masking of the matrix in order to compute the warping path
in a warping window. The resulting mask is then consistent
with the sensing dates of the satellite images and adapted to
this kind of irregularly sampled data.

C. Handling cloud-contaminated images

In the classification of single satellite images, cloud-covered
pixels have usually a minor impact on the results: cloud-
covered areas are usually removed from the results. However,
when handling satellite image time series, the atomic data is
the series of radiometric values taken over an area. In this way,
the probability of a cloud contamination greatly increases. Let
us imagine a simple case where the probability for a pixel to
be cloud-covered is constant. Let the probability Pp(C̄) for a
sensed area p to be cloud-free, we have then the probability
PS(C̄) for a sequence S to be cloud-free is:

PS(C̄) = (Pp(C̄))|S| (9)

with |S| be the length of the sequence S. In this way, even with
a low probability of cloud cover, the probability of a cloud-
free sequence remains very low. Therefore, there are three
main ways of dealing with clouds in the analysis of SITS:

1) letting the cloud-covered values in the dataset;
2) removing predominantly cloud-covered images from the

SITS;
3) removing the cloud-covered values only.

The first solution will add noise in the comparison of the ra-
diometric profiles, since the cloud-covered values will be part
of the radiometric behaviors, while they are not characteristic
of the sensed surface. The second solution can only be used
if the clouds are located on a set of images. In this way, this
solution appears to be unrealistic for operational conditions.
Moreover, all cloud-free values in the removed images will
be ignored for the analysis, while remaining images (possibly
containing a few clouds) will be treated according to the first
solution. The third solution is obviously the most interesting
one, since the cloud-covered values are removed beforehand,
while preserving all cloud-free ones. However, this solution
induces sequences with different lengths. In this way, this so-
lution requires a similarity measure able to compare sequences
with different lengths (implying different temporal sampling).
Contrary to classical similarity measure between sequences,
DTW is not limited to the comparison of sequences with equal
lengths. Actually, DTW’s ability to realign sequences makes it
possible to operate non-linear distortions on the temporal axis.
In this way, DTW makes it possible to compare sequences with
different lengths and sampling, while keeping its ability to find
the optimal coupling of the two sequences.

V. MATERIALS AND METHODS

A. Image data

We detail here the main information concerning the images
used for this work. The area of study of this work is located
near the town of Toulouse in the South West of France. There
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Fig. 5. One image from the series (August, 4th 2007).

are 70 FORMOSAT-2 images acquired over three cultivation
years:
• 46 images in 2006;
• 13 images in 2007;
• 11 images in 2008.

The temporal distribution of the images is given in Figure 4
and one image of the three series is given in Figure 5.
Moreover, images sensed in 2006 are quite cloud-covered
(about 30 % of the “pixels”), while the two next series are
quite cloud-free (less than 3 %).
From these images, we use the multi-spectral product at a
spatial resolution of 8 m and only the three bands Near-
Infrared, Red and Green are kept, since the blue channel gives
little information about vegetation and is very sensitive to
atmospheric artifacts.

Before being used in this work, the FORMOSAT-2 products
have been orthorectified (guaranteeing that a pixel (x, y)
covers the same geographic area throughout the image se-
ries). All images also undergo processes in order to make
the radiometric pixel values comparable from one image to
another. These processes consist of converting the digital
counts provided by the sensor into a physical magnitude and
in restoring their own contribution to the surface by correct-
ing for atmospheric effects. From the instrument radiometric
model, digital numbers are first converted into reflectances
(normalized physical quantity of solar irradiance). The abso-
lute calibration coefficients used in this step come from the
monitoring of FORMOSAT-2 sensor conducted by the French
Space Agency. The inversion of the surface reflectance is then
made by comparing the measured reflectance in simulations
at the top of the atmosphere, carried out for atmospheric
and geometric conditions of measurement. The elevation is
taken into account by carrying out simulations for various
altitudes, including a weighting of the atmospheric pressure

and the amounts of aerosols and water vapor. The state of the
atmosphere at the time of the sensing is in turn characterized
using meteorological sources (NCEP for the pressure and
the humidity), using ozone data sources (TOMS or TOAST)
and using aerosol data (SEAWIFS, AERONET). Otherwise,
climatological values are used.

Moreover, for each cultivation year, we have a land cover
map produced by the method described in [43] and using a
comprehensive ground reference data set. Also, cloud masks
are produced using the cloud screening procedure described
in [44].

B. Construction of the time series

Let us define how the sequences are built from this image
time series. Definition 1 formalizes the concept of a multi-
valued image. For each image, a mask giving the position of
clouds and their projection on the ground is available. Then,
Definition 2 details how the time series are built from the
sequence of images.

Definition 1: Let Simage =< I1, . . . , IN > be a series of
N images of width W and height H. Let B be the number of
bands in the images. Each multivalued (with multiple bands)
image In (n ∈ [1,N ]) can be seen as a function:

In : [[1,W]]× [[1,H]] → ZB

(x, y) 7→
∏B

b=1 I
n
b (x, y)

(10)

with
∏

be the Cartesian product.
Definition 2: Let S be the dataset built from the image time

series. S is the set of sequences defined as:

S = {{< I1(x, y), · · · , IN (x, y) > |x ∈ [[1,W]], y ∈ [[1,H]]}}
(11)

Then, each sequence is built as the series of tuples
(NIR,R,G) for each pixel (x, y) in the image series.

Moreover, each satellite image In is associated to a cloud
mask defining geographic areas which could be affected by a
cloud. Thus, all the values In(x, y) are removed/skipped from
the series if the mask indicates a cloudy-affected value. Hence,
the length of analyzed sequences can differ from one series
to another. Since DTW is able to compare sequences with
different lengths, these corrected time series can be used di-
rectly, and prevents the interpolation of “cloud-contaminated”
values [45].

C. Experimental settings

We provide here some details about the experimental set-
tings:
• The distance used between two coordinates of sequences

is the squared Euclidean distance. As the square function
is a strictly increasing function on positive numbers, and
because we only use comparisons between distances,
it is unnecessary to compute square roots. The same
optimization has been used in [46], and is rather usual.

• The averaging method used for DTW is the association
of DBA and adaptive scaling (AS) as described in [3]
with 15 iterations of the process and constraining the AS
process with the inertia of the clustering algorithm.
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day of year (2006)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

day of year (2007)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

day of year (2008)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fig. 4. Temporal distribution of images used from the two years. Each spot represents an acquired image.

• The Kappa index, which is detailed in Appendix A, is
used to compare the results.

VI. EXPERIMENTS

This section aims to demonstrate the utility of DTW for
the analysis of Satellite Image Time Series. We study three
configurations using DTW:
• Subsection VI-A presents the clustering of the 2006 year,

in order to show the ability of DTW to handle “cloud-
contaminated” SITS.

• Subsection VI-B details a joint clustering of two culti-
vation years with 13 images over the first year (2007)
and eleven images over the second year (2008). It aims
at showing that the information redundancy sensed over
each is useful in order to improve the generalization
performance of the classifier;

• Subsection VI-C presents a domain adaptation example,
learning classes on a year in order to classify another year.
It will show that DTW is, not only theoretically, able to
compare sequences with different lengths and sampling,
in order to reuse formerly sensed image time series.

A. Clustering of the series sensed in 2006

The aim of this experiment is to demonstrate the ability
of DTW to handle sequences with very different lengths
in the same dataset. Figure 6 shows actually that the SITS
sensed in 2006 is quite cloud covered with about 28 % of
the sensed pixels that are cloud covered. This is a typical
example where we would neither want to keep (too numerous)
the cloudy values in the dataset, nor want to remove the
(too numerous) cloud-covered images. To illustrate our point,
Table II illustrates the loss of cloud-free values in the case of
the second option, i.e., removing the too cloud-covered images.
It can be seen that if the analysis is limited to images with a
cloud-covering of less than 10 % of the sensed area, 20 images
are put aside and 7.2 million of cloud-free sensed pixels are
not used in the analysis (corresponding to more than seven
completely cloud-free images). Obviously, the relevance of the
analysis would be then seriously affected.

Following the methodology proposed in Section V-B for
the construction of the sequences, all cloud-covered values
(as well as their projections on the ground) are removed. We
are thus provided with a radiometric time series for each area
(x, y). Then, the times series have been divided into 24 clusters

day of year

Cloud covering

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fig. 6. Cloud covering of the SITS sensed in 2006

TABLE II
LOSS OF CLOUD-FREE VALUES DEPENDING ON THE ACCEPTED MAXIMUM

CLOUD-COVERING OF THE IMAGES

Maximum accepted cloud covering
per image (%)

40 30 20 10 0

Eliminated images 14 15 18 20 28

Million of of cloud-free pixels lost 2.5 3.2 4.7 7.2 18.1

(as many clusters as there are classes in the reference land
cover map). Two configurations are studied: one without any
constraint on the maximum time delay in the alignment of the
sequences, and one with a maximum time delay of two month.
Figures 7(a) and 7(b) presents respectively the obtained results
without and with a constraint on the time-delay. Figure 7(c)
depicts the land cover reference map.

Statistically, the result obtained with Dynamic Time Warp-
ing have an agreement (Kappa) of 86.9 % for the uncon-
strained version and of 87.2 % for the constrained one.
Visually, the main classes are quite well recognized, except
for the meadow and the fallow classes that are mixed up
for the two configurations. However, in the unconstrained
configuration, there is also a mix-up between the wild land
class and the forest (in a broad sense), while there is not in
the constrained version.

B. Joint clustering of two cultivation years

This experiment consists of clustering simultaneously the
two years 2007 and 2008. Actually, since DTW is able
to compare sequences with different lengths, the K-MEANS
algorithm is able to classify sequences built over 2007 and
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(a) (b)

(c)

Fig. 7. The clustering results computed with DTW in the unconstrained and constrained version are depicted respectively in Figures 7(a) and 7(b). This
clustering can be compared to reference map in Figure 7(c).

sequences built over 2008, together. We expect this approach to
enhance the ability of the clustering algorithm to form relevant
clusters. Once the centroids of the K-MEANS algorithm are
learned, similar classes (in terms of data representation) are
represented by a single centroid. However, several centroids
are predominantly representing sequences from only one year,
for two main reasons:

• there are more classes represented in 2007 (25 classes)
than in 2008 (22 classes) ;

• the temporal sampling of the data is not very same.

The second reason is more harmful than the first: if two
phenomena are not sensed with a similar temporal discretiza-
tion, sequences representing this phenomenon can be different
enough to be separated by the clustering algorithm. Using
the K-MEANS algorithm to cluster the sequences, this “bad”
separation of the data can occur frequently since two clusters
representing the same class can be much populated, making
centroids easily diverge. In order to reduce this separation
of classes, an Ascendant Hierarchical Clustering algorithm
is used in order to aggregate these pairs of centroids. Even
if these two behaviors are slightly different, their means
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(mean behaviors) will be very close to each other. Thus,
starting with the K-MEANS algorithm parametrized to form 30
clusters, the 30 corresponding centroids are aggregated into
25 centroids. These 25 centroids are then used to classify
separately sequences from 2007 and sequences from 2008.
Thus, two clustering maps can be drawn: one for 2007 and
one for 2008.

Figure 8 shows results from the joint clustering of sequences
from 2007 and sequences from 2008, as well as corresponding
reference land cover maps.

Results obtained are spatially regular and connected which
gives a first quality assessment of this result. We computed
the Kappa index in order to compare the clustering results to
the land cover reference maps. The clustering maps provided
by the joint clustering obtained a Kappa of 88 % for the year
2007 and a Kappa of 87 % for the year 2008. In order to
evaluate the improvement of this joint clustering, we also
computed separate clustering of each year. The clustering
over 2007 obtained a score 87 % while the one over 2008
obtained a score of 85 %. From a qualitative standpoint and
according to the reference maps, the main three classes, i.e.,
wheat (yellow), corn (orange), and forest (green) are correctly
separated in the data space, for both maps. The main confusion
concerns the wildland class (gray) and the meadow class (light
green), since they are spectrally and temporally close to each
other. Moreover in 2008, the urban class (pink) is sometimes
clustered with the wheat class, since there are no images
during April and May, i.e., during the NDVI peak of the wheat
crop.

These results show that DTW is able to exploit the infor-
mation redundancy (in terms of type of behavior) between
two years in order to obtain a better classification of each
year with few images per year. Thus, the property of DTW
to compare sequences with different lengths and samplings
makes it possible to benefit from more diverse examples in
order to better generalize the learned model.

C. Domain adaptation between two cultivation years

The second experiment consists of a domain adaptation
example: learning classes over 2007 thanks to the reference
land cover map, in order to classify the 2008 image series.

Classical domain adaptation methodologies are learning
classes on one image in order to classify another one. More-
over, the learning process is usually using external knowl-
edge in order to improve the accuracy of the model, if its
generalization is inaccurate. However, in our case, the model
is learned on one satellite image time series in order to
classify another one. In this way, the learned model is better
generalized and adding supplement knowledge is proven to
be unnecessary. The true difficulty is actually to make these
two series comparable. Technically, we use once again the
ability of DTW to compare sequences with different lengths
and sampling in classifying 2008 sequences with centroids
learned on 2007 ones. This experiment aims at showing that
this comparison is also thematically relevant.

The idea is first to cluster sequences from 2007, then label
and split these clusters with the reference land cover map of

Fig. 9. Results of the adaptation domain experiment from 2007 to 2008.
The classification map is automatically colorized according to the labels of
centroids.

2007 and finally to classify the sequences built over 2008 with
these labeled centroids. The process is as follows:

1) make 25 clusters with the sequences sensed over 2007
using the K-MEANS algorithm;

2) for each formed cluster:
a) compute its distribution (histogram) in terms of classes

of the reference land cover map;
b) for each class appearing in this histogram which is

populated with more than one percent of the image
(i.e., 1000 pixels), build a new centroid (in averaging
the corresponding sequences).

3) classify sequences from 2008 by assigning the class of
the closer built centroid.

Figure 9 shows results of this domain adaptation experi-
ment; the 2008 reference land cover map can be found in
Figure 8(d).

In the same way as for the previous experiments, we com-
puted the Kappa index, which gave a score of 84 % compared
to the 2008 ground truth. Qualitatively, the corn class is quite
well recognized even if it was sometimes confused with the
soybean class (red) which has a similar spectral evolution at
this sampling. Moreover, in the same way than in the previous
experiment, the urban class is sometimes clustered with the
wheat class, since an additional image would be necessary in
May in order to separate them.

This experiment shows two aspects. Firstly, it confirms the
relevance of the use of DTW to compare sequences with
different lengths on one side, and especially with different
temporal sampling on the other side. Secondly, the Kappa
score obtained shows that the knowledge associated to an
image time series acquired one year can be used directly to
classify another year.



PETITJEAN et al.: SATELLITE IMAGE TIME SERIES ANALYSIS UNDER TIME WARPING 13

(a) (b)

(c) (d)

Fig. 8. Results of the joint clustering of sequences from 2007 and 2008. Subfigure 8(a) (resp. Subfigure 8(c)) shows the clustering map which can be
compared to the land cover reference shown in Subfigure 8(b) (resp. Subfigure 8(d)). The maps 8(a) and 8(c) have been recolored according to the land cover
maps 8(b) and 8(d). The legend of the maps is given in Appendix B.

VII. CONCLUSION

In this paper we have introduced the Dynamic Time Warp-
ing as a tool to deal with two of the main issues raised by
high temporal resolution satellite image series, namely the
irregular sampling in the temporal dimension and the need for
comparison of pairs of time series having different number of
samples.

In order to illustrate the properties of DTW, we have
presented three applications to real data. The first one demon-
strated the relevance of DTW to handle cloud-contaminated

SITS and its ability to be constrained according to expert’s
knowledge about the land cover phenology.

The second one showed how DTW can be used to jointly
cluster two sets of data acquired over the same area during
two different years and therefore taking benefit from the cyclic
behavior of – mostly vegetation – land surfaces. The fact that
each year has a different set of dates and that those dates
are not regularly distributed through the year does not prevent
their joint use in order to improve the clustering results. We
showed that the joint clustering gives better results than the
separate clustering of each year.
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The third example belongs to the family of domain adapta-
tion problems where the information extracted from a data set
is used to process a different data set. In this case, we used
DTW in order to generate clusters for one year and apply them
to the clustering of another year which, again, has a different
set of available acquisition dates. In this case, the power of
the method resides in the fact that ground data gathered in
during the 2007 agricultural season can be used to process the
following year without the need for new field work.

DTW is able to loosen several temporal constraints on
images sensing. It thus emerges as a flexible tool to handle
heterogeneous data produced by remote sensing.

APPENDIX A
EVALUATING CLUSTERING RESULTS

In order to compare clustering results to land cover reference
maps, we compute the Kappa index (κ) which is defined by:

κ =
Pr(a)− Pr(e)

1− Pr(e)
(12)

where Pr(a) is the relative agreement among raters, and Pr(e)
is the hypothetical probability of chance agreement, using the
observed data to calculate the probabilities of each observer
randomly choosing each category. There are many ways to
compute this index. When data is not labeled (as it is the
case with clustering), this computation consists of taking all
point couples ( p1 , p2 ) = ( (x1, y1) , (x2, y2) ) and
see the configuration of these two points in each partition
(the clustering and the ground truth). There are four possible
configurations:

1) p1 and p2 belong to the same partition both in the
clustering and in reference map;

2) p1 and p2 belong to the same partition in the clustering
but not in the reference map;

3) p1 and p2 belong to the same partition in the reference
map but not in the clustering;

4) p1 and p2 belong to the same partition neither in the
reference map nor in the clustering.

In order to evaluate the number of couples of points in each
configuration, a counter can be associated to each configura-
tion and incremented each time a configuration appears:

1) a counter ss for the “same same” configuration;
2) a counter sd for the “same different” configuration;
3) a counter ds for the “different same” configuration;
4) a counter dd for the “different different” configuration.

Thus, the Kappa index can be computed with:

Pr(a) =
ss+ dd

ss+ sd+ ds+ dd
(13)

and

Pr(e) =
(ss+ sd)× (ss+ ds) + (sd+ dd)× (ds+ dd)

(ss+ sd+ ds+ dd)2
(14)

APPENDIX B
LEGEND OF THE MAPS
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