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Toward Electronic Surveillance of
Invasive Mold Diseases in Hematology-
Oncology Patients: An Expert System
Combining Natural Language Processing
of Chest Computed Tomography Reports,
Microbiology, and Antifungal Drug Data

abstract

Purpose Prospective epidemiologic surveillance of invasive mold disease (IMD) in hematology patients is
hampered by the absence of a reliable laboratory prompt. This study develops an expert system for
electronic surveillance of IMD that combines probabilities using natural language processing (NLP) of
computed tomography (CT) reportswithmicrobiologyandantifungaldrugdata to improvepredictionof IMD.

Methods Microbiology indicators and antifungal drug–dispensing data were extracted from hospital in-
formation systems at three tertiary hospitals for 123 hematology-oncology patients. Of this group, 64 case
patients had 26 probable/proven IMD according to international definitions, and 59 patients were un-
infected controls. Derived probabilities from NLP combined with medical expertise identified patients at
high likelihood of IMD, with remaining patients processed by a machine-learning classifier trained on all
available features.

Results Comparedwith the baseline text classifier, the expert system that incorporated the best performing
algorithm (naı̈ve Bayes) improved specificity from 50.8% (95% CI, 37.5% to 64.1%) to 74.6% (95% CI,
61.6% to 85.0%), reducing false positives by 48% from29 to 15; improved sensitivity slightly from96.9%
(95% CI, 89.2% to 99.6%) to 98.4% (95% CI, 91.6% to 100%); and improved receiver operating
characteristic area from 73.9% (95% CI, 67.1% to 80.6%) to 92.8% (95% CI, 88% to 97.5%).

Conclusion An expert system that uses multiple sources of data (CT reports, microbiology, antifungal drug
dispensing) is a promising approach to continuous prospective surveillance of IMD in the hospital, and
demonstrates reduced false notifications (positives) compared with NLP of CT reports alone. Our expert
systemcould provide decision support for IMD surveillance, which is critical to antifungal stewardship and
improving supportive care in cancer.

Clin Cancer Inform. © 2017 by American Society of Clinical Oncology

INTRODUCTION

Invasivemold disease (IMD) has significant health
and economic consequences1-3 and is likely to
increase as the population of immunocompro-
misedpatients expands.4 IMDmost oftenpresents
as pneumonia in patients with impaired immu-
nity due to a variety of causes, including chemo-
therapy for cancer, immunomodulatory drugs, or
transplantation.3,5,6 IMD is associated with mor-
tality rates of. 50% in patients with hematologic
malignancies and transplantation recipients3,6

and may adversely affect long-term cancer cure
rates due tomodifications in curative chemother-
apy regimens.7 Hospitals spend millions on anti-
fungal drugs but have not invested in prospectively
monitoring their local epidemiology (ie, institution-
specific pathogens, rates, and patients affected),
despite it being a key performance indicator of
antifungal drug stewardship programs.8Knowl-
edge of local fungal epidemiology is important
for several reasons. It informs local guidelines,8,9

infection prevention efforts, clinical trial design,
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clinical audit, and benchmarking that addresses
interfacility clinical variation.10 Epidemiologic sur-
veillance of IMD is difficult because of the absence
of a consistent laboratory prompt, such as a pos-
itive blood culture. As a result, case finding relies
on manual interrogation of multiple data sources,
including bedside clinical review, radiology, and
microbiology, which makes it a costly, onerous
task not performed by hospitals outside research
protocols.3,5,6 As a result of an absence of surveil-
lance data, hospitals are ill equipped to evaluate
their clinical practice, rationalize antifungal drug
use, detect outbreaks, or identify new, previously
under-recognized at-risk patient groups.

To facilitate monitoring of IMD in hospitals, we
developed natural language processing (NLP) of
chest computed tomography (CT) reports.11,12We
have previously shown that the primary screening
method for IMD,with ahigh sensitivity tomaximize
case finding, should focus on chest CT.11,12 CT is
universally performed when IMD is suspected,
and pulmonary involvement is present in 90%
to 100% of patients with IMD.3,5,13 Although lung
sampling (ie, biopsy or bronchoalveolar lavage
[BAL]) andother laboratory indicators (eg, sputum
culture, biomarkers) could be used for epidemi-
ologic surveillance, they are not performed with
the same frequency as CT scans.

Ourbaseline text classifier, detailedelsewhere,11,12

was based on automatically learned, hierarchi-
cally organized, cascading text categorization tech-
niques. In brief, we obtained 1,880 free-text CT
reports for 270 patients with IMD and 257 control
patients from three tertiary hospitals.11 We ana-
lyzed IMDevidenceatpatient, report, and sentence
levels. Training data were obtained by three in-
fectious disease physicians who annotated a sub-
group of 449 reports from79patients with IMDand
68control patients for language features suggestive
of IMD.11 We tested a variety of machine learning,
rule-based, and hybrid systems, with feature types
including bags of words, bags of phrases, and bags
of concepts, as well as report-level structured
features.11,12 The best system (using support vec-
tor machines) achieved high recall over unseen
data, with a sensitivity of 91%, specificity of 79%,
and receiver operating characteristic (ROC) area of
0.92, with few clinically significant missed notifica-
tions (0.9%)at report level,11 whereas in a separate
experiment that used a slightly smaller data set
(n = 1,716 free-text CT reports), it identified 100%
of patients with IMD.12 With a negative predictive
value of 97% to 99% (across a range of hypothet-
ical IMD prevalence rates), IMD could be excluded
with confidence.11 Our next goal was to minimize

false notifications (ie, improve specificity) while
maintaining or improving case detection (ie, sen-
sitivity). Therefore, we developed an expert system
that incorporated derived probabilities from NLP of
CT reports,medical knowledge rules, andmachine
learning classifiers for processing adjunctive data
(microbiology and antifungal drug–dispensing data)
to enable real-time, sustainable, and network-wide
surveillance of IMD with minimal effort.

METHODS

Study Design and Setting

This was a retrospective case-control cohort study
of patients from three tertiary adult university-
affiliated hospitals (Alfred Health, Peter MacCal-
lum Cancer Institute, and Royal Melbourne Hos-
pital). AlfredHealth andRoyalMelbourneHospital
operate statewide allogeneic and autologous he-
matopoietic stem-cell transplantation (HSCT) ser-
vices, which collectively perform approximately
250 allogeneic transplantations per year. Peter
MacCallum Cancer Institute performs autologous
HSCT only. The human research ethics commit-
tees at each site approved the study.

Clinical Data and Definitions

We selected a random convenience sample of 64
infected case patients and 59 uninfected control
patients from the original data set used to develop
the text classifier.11 Microbiology and antifungal
drug–dispensing data for each clinical encounter
(defined from admission to discharge, death, or
transfer from hospital) were extracted from hos-
pital information systems and combined with
probabilistic outputs of the text classifier derived
from the earlier study.11

IMD was classified according to internationally
accepted definitions.14 Possible infections had
suggestive radiologic features in the appropriate
clinical context but lacked positive microbiology,
whereas probable or proven infections had posi-
tive microbiology, such as isolation of a fungal
pathogen from sputum or tissue.14

Microbiology included microscopy and culture of
specimens from sterile and nonsterile body sites,
including blood, BAL, tissue, pleural fluid, sputum,
and biomarkers (galactomannan [GM], panfungal
or Aspergillus-specific polymerase chain reaction
[PCR]). We obtained pharmacy-dispensing data
for the following antifungal drugs—fluconazole,
voriconazole, posaconazole, liposomal amphoteri-
cin, caspofungin, itraconazole, and terbinafine—as
well as the dosage, formulation (oral, intravenous),
presentation (vials, tablets), and dates dispensed.
None of the hospitals had electronic prescribing
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systems in place, so drug-dispensing data approx-
imated the actual dose administered to the patient.

Development of the Expert System

Our approach can be deconstructed into two
phases: 1) We detected the patients at high likeli-
hood of IMDby combining the probabilistic output
of the text classifier with expert knowledge rules
about IMD, and 2) for the remaining patients, we
trained a classifier on all the available features
including output of the text classifier, antifungal
drug–dispensing data, and microbiology investi-
gations and results.

Preprocessing

Preprocessing involved transforming themanually
collected data from long to wide format. Each
electronic event (ie, CT scan, drug dispensed,
microbiology result) per clinical encounter was
given a time stamp (date). Electronic events rep-
resented the following variables: probabilistic out-
puts of text classification of CT scan reports
derived from the earlier study,11 results of key
microbiological investigations, and antifungal
drug use (Table 1). Categorical variables (ie, pos-
itive, negative, or no test available) were assigned
for each electronic event.

For example, electronic events were named
Scan_Any positive, Blood_Any positive, BAL_Any

positive, Pleural Fluid_Any positive, PCR_Any
positive, GM_Any positive, Sterile_Any positive,
andNon_sterile_Any positive, with “Anypositive”
denoting all positive results in that category for
each clinical encounter. Scan_Any positive was
set to positive if the text classifier returned a
value > 0.5 with the highest probability from
any scan in the clinical encounter supplied to
the expert system. Isolation of Candida species
from the pulmonary or oropharyngeal tract was not
regarded as significant.

A clinical encounter with a negative CT scan by
NLP and positive sterile site microbiology (ie,
Sterile_Any positive) was marked as positive for
IMD and not sent to the final classifier. Isolation of
fungal pathogens from a nonsterile site, such as
sputum, usually denotes colonization rather than
invasive infection. However, for purposes of epi-
demiologic surveillance, we regarded the isolation
of molds from sputum (ie, Non_Sterile_Any pos-
itive) as significant because of the high likelihood
of either occult or subsequent invasive disease in
this high-risk population.15

We created handcrafted rules on the basis of
medical expertise (M.R.A.-R., K.T., M.S.) and in-
formed by real-world data from a previous study1

to interpret complex antifungal drug–dispensing
data. These rules aimed to identify drug regimens
more likely to reflect definitive treatment of IMD

Table 1. Definitions of Electronic Event Variables for CT, Microbiology, and Antifungal Drug–Dispensing Data Used by the Expert System

Electronic Event

Hospital

Information System Description

Scan_Any positive Radiology CT scan report with a probability. 0.5 for IMD by the baseline text classifier any time during the
patient’s clinical encounter (ie, episode of care).

Specimen_Any positive Microbiology Specimens can be from sterile or nonsterile anatomic sites. These may be samples from blood,
tissue, pleural fluid, sputum,orwoundsites.Anypositive refers to isolationof a fungal pathogen
at any time during the patient’s clinical encounter (ie, episode of care).

Sterile_Any positive Microbiology Sterile sites include blood, pleural fluid, BAL, tissue (eg, lung or sinus biopsy). Any positive refers
to isolation of a fungal pathogen at any time during the patient’s clinical encounter (ie, episode
of care).

Nonsterile_Any positive Microbiology Nonsterile sites includesputum,nasopharyngeal swab,mouthswill, or occasionally,wounds.Any
positive refers to isolation of a fungal pathogen at any time during the patient’s clinical
encounter (ie, episode of care).

PCR or GM_Any positive Microbiology PCRandGMaremolecular biomarkers for fungal pathogens. PCRmaybeperformed on a variety
of specimens, including blood and tissue. GM is usually performed on lung specimens (eg,
BAL) or serum. Any positive refers to a positive result at any time during the patient’s clinical
encounter (ie, episode of care).

Rule 1 Pharmacy Set to “yes” if voriconazole, irrespective of formulation, exceeded 4,200 mg per clinical
encounter.

Rule 2 Pharmacy Set to “yes” if at least 150 mg of liposomal amphotericin was dispensed daily for 7 days or more
during a clinical encounter.

Rule 3 Pharmacy Set to “yes” if 50 mg or more of caspofungin was dispensed daily for 5 days or more per clinical
encounter

Abbreviations: BAL, bronchoalveolar lavage; CT, computed tomography; GM, galactomannan; IMD, invasive mold disease; PCR, polymerase chain reaction.
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rather than empirical or prophylaxis indications.
Our earlier study1 observed that median duration
of inpatient therapy was 6 days for voriconazole,
7.5 days for liposomal amphotericin, and 6 days
for caspofungin in patients with invasive fungal
disease. Our drug rules were based on these
observationsbutmodified (Table1), becausedrug
dispensing from pharmacy to the hospital wards is
not always consecutive, and the volumes of drug
dispensed are variable. If drugs were given but not
above the thresholds set by the rules, the variables
were set to either “low” or “no.”Wedid not include
rules for fluconazole, itraconazole, and posacona-
zole, because these drugs are more frequently
used for prophylaxis rather than treatment of
established IMD, and our pharmacy dispensing
data do not provide clinical indications for pre-
scription. Terbinafinewasnot included inour rules
because it is reserved for the rare episode of in-
vasive scedosporiosis, where it is coadministered
with voriconazole, a scenario thatwouldhavebeen
detected by our voriconazole rule.

Architecture of the Expert System

The expert system (Fig 1) comprised machine-
learning classifiers for text analysis and final

classification, algorithms informed by medical
knowledge, and clinical data. Fungal isolates from
sterile sites, including blood (ie, Blood_Any pos-
itive or Sterile_Any positive), which unequivocally
represented invasivediseasewere identifiedwitha
medical rule (Step 1, Fig 1). The baseline text
classifier then screened all CT reports (Step 2, Fig
1). Positive IMD cases from the text classifier were
classified as positive, without sending them to the
final classifier, if either BAL_Any positive (ie, fun-
gal isolation from lung) or Non_Sterile_Any posi-
tive (ie, fungal isolation from sputum)were labeled
as positive. In this way, only undecided cases with
negativeorno testsonBlood_Anypositive,BAL_Any
positive, Sterile_Any positive, and Non_Sterile_Any
positive were sent to the final classifier (Fig 1). Thus
the final classifier processed probabilistic outputs
from the text classifier of CT reports, drug data not
subject to the aforementioned rules, and negative or
missing microbiology.

Classification Algorithms

We experimented with several machine-learning
algorithms, shown inTable 2. For implementation,
we used the R programming language, together
withWekaand theRWeka16package.All algorithms

Microbiology tests

Preparation and
aggregation

BAL-Any positive or
Non-Sterile-Any

positive 

fungal

Microbiology Test Data

Legend

Blood–Any
positive or
Sterile–Any

positive

fungal

Antifungal–drug
dispensing data

Drug-related rule
outcome data

Apply Boolean
rules

Drug-Dispensing Data

Final
classifier 

elsep > th2 

fungal not fungal

CT scan report

CT scan
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not fungal

p > th1 else

CT Scan Reports

Step 3

Step 2
Step 1
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Data

Action with
medical knowledge
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Patient descriptors
(what tests, which ones positive)
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p

Fig 1. Architecture
of the expert system
incorporating natural
language processing,
microbiology,
and antifungal
drug–dispensing data
for invasive mold disease
classification. Sterile
specimens include
blood, pleural fluid,
bronchoalveolar lavage
(BAL), and tissue (eg, lung
or sinus biopsy). Nonsterile
specimens include
sputum, nasopharyngeal
swab, mouthswill, or
occasionally, wounds. Any
positive refers to isolation of
a fungal pathogen at any
time during the patient’s
clinical encounter (ie,
episode of care). Th1 refers
to the threshold of 0.5 that
was prespecified for the
baseline text classifier,11,12

meaning that a report with
a probability > 0.5 was
flagged positive. Th2 is the
threshold selected by the
best-performing final
classifier (Table 3) to
maintain sensitivity and
maximize specificity.
Dashed lines represent
inputs to the classifiers as
opposed to processing
steps and inputs to the
expert system. CT,
computed tomography.
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used their Weka default configurations (the C4.5
implementation in Weka is called J48).

Evaluation Procedure

Evaluation was performed for the expert system
overall.Weused10-fold cross-validation that used
all available data to train and test the expert
system, meaning that we obtained a prediction
for each of the 123 data points. The results of
the expert system for each clinical encounter
(with IMD diagnosed or not) was compared with
physician-adjudicated opinion on the basis of pub-
lished diagnostic criteria,14 which allowed for the
calculation of sensitivity, specificity, and ROC.

RESULTS

Patient Characteristics

The data set of 123 patients comprised 64 (52%)
patients with IMD and 59 (48%) uninfected con-
trol patients (Table 4). Neutropenia (< 0.53 109
cells/L) was present in 86% and 71% of case and
control patients, respectively, and was prolonged
(median, 17 and 18 days, respectively). A history
of HSCTwas present in 53%and 46%of case and
control patients, and was allogeneic in 85% and
78% of patients, respectively. IMD was probable
or proven in 26 of 64 patients (41%). Sinus and/or
pulmonary disease occurred in 90% of case pa-
tients. Invasive aspergillosis comprised 14 of 26

(54%) of microbiologically confirmed cases, with
rare molds, including Scedosporium and Rhizo-
pus species, identified in nine of 26 (35%).

Performance of the Final Classifier

Performance of the final classifiers for different
threshold values is shown in Table 3 and Figure 2.
Performance was best using naı̈ve Bayes, which
increased the specificity from 50.8% (95% CI,
37.5% to 64.1%) to 74.6% (95% CI, 61.6% to
85.0%), with anROC of 92.8% (95%CI, 88.0% to
97.5%). With this approach, false notifications fell
48%, from 29 to 15, with improvements in sensi-
tivity from 96.9% (95% CI, 89.2% to 99.6%) to
98.4% (95% CI, 91.6% to 100%).

Error Analysis

Error analysis of the expert system, as shown in
Table 5, focused on the naı̈ve Bayes algorithm,
because this had the best performance charac-
teristics in experiments. We found one missed
patient with IMD (false negative) resulting in an
overall missed notification rate of 0.8% (one of
123). Thispatient hadaprevious lung resection for
Scedosporium apiospermum infection in an ear-
lier clinical encounter, but the CT scan for the
current encounter was appropriately labeled neg-
ative by the text classifier because it repre-
sented postoperative changes. Although the
patient received liposomal amphotericin and
voriconazole sequentially, neither exceeded
the thresholds to trigger the drug rules for that
particular encounter.

There were 15 patients flagged positive by the
expert system (false positives) but subsequently
not diagnosed with IMD (Table 5). In all cases, the
probability of fungal disease according to the text
classifier (Scan_Any positive) was well above the
prespecified threshold of 0.5. In other words, the
baseline text classifier was responsible for the

Table 2. Parameters Used for the Machine Learning Algorithms

Algorithm Parameters

Naı̈ve Bayes —

Logistic MaxIts = 21, ridge = 1.0 3 1028

Random forest numTrees = 10, numFeatures = 5

J48 confidenceFactor = 0.25, minNumObj = 2

SMO c = 1, cachesize = 250,007, exponent = 1.0

Abbreviation: SMO, sequential minimal optimization.

Table 3. Performance Characteristics of the Classifiers Compared With the Baseline Text Classifier

Algorithm Threshold*

Sensitivity,

% (95% CI)

Specificity,

% (95% CI)

ROC,

% (95% CI)

Baseline text classifier 0.00 96.9 (89.2 to 99.6) 50.8 (37.5 to 64.1) 73.9 (67.1 to 80.6)

Naı̈ve Bayes 0.32 98.4 (91.6 to 100.0) 74.6 (61.6 to 85.0) 92.8 (88.0 to 97.5)

Random forest 0.12 96.9 (89.2 to 99.6) 72.9 (59.7 to 83.6) 94.1 (89.8 to 98.3)

Logistic 0.00 98.4 (91.6 to 100.0) 50.8 (37.5 to 64.1) 91.1 (85.7 to 96.5)

SMO 0.12 96.9 (89.2 to 99.6) 69.5 (56.1 to 80.8) 92.4 (87.5 to 97.3)

J48 0.10 96.9 (89.2 to 99.6) 57.6 (44.1 to 70.4) 87.2 (80.6 to 93.7)

Abbreviations: ROC, receiver operating characteristic; SMO, sequential minimal optimization.
*The algorithm generated a threshold automatically to maintain sensitivity at least as high as the baseline text classifier while maximizing
specificity.
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majority of false positives; a drug rule was positive
in nine encounters, and one encounter had a
positive microbiology indicator being Non_Sterile_Any
positive (ie, Aspergillus fumigatus isolation from

sputum) in a patient with multiple myeloma who
did not have an IMD.

DISCUSSION

Our expert system is a promising model for elec-
tronic surveillance of IMD in hospitals that extends
earlier efforts to detect IMD from chest CT reports
using NLP.11,12 High sensitivity maximized case
finding, and we reduced false notifications (ie,
improved specificity) by combining microbiology
and antifungal drug–dispensing data with NLP of
CT scan reports.11,12 Compared with the baseline
text classifier, the best performing expert system
improved sensitivity slightly from96.9% to 98.4%.
The greatest benefit was seen in specificity, which
increased from 50.8% to 74.6%, reducing false
notifications by 48% from 29 to 15. Overall accu-
racywasgood, as reflectedbyareaunder theROC,
which increased from 73.9% to 92.8% compared
with the baseline text classifier alone.

The use of NLP was motivated by the poor sen-
sitivity of other screening approaches for epide-
miologic surveillance of IMD. Laboratory-based
surveillance of IMD that uses culture and histology
is insensitive becausemicrobiology forAspergillus
and hyalinemolds is positive in< 50%of cases,17

and patients are often too unwell to undergo
invasive diagnostic procedures. Molecular bio-
markers, including GM or PCR, are not widely
available and have a suboptimal sensitivity,18,19

which is further reduced by concomitant antifun-
gal therapy administered at the earliest clinical
suspicion of IMD.20 Coding data are unreliable for
IMD surveillance21 and neither timely nor infor-
mative enough for outbreak detection. Our expert
system that incorporates NLP of CT reports could
overcome many of these barriers. It leverages
routinely available electronic clinical and opera-
tional data that will become easier to access in the
computational environment of the electronicmed-
ical record (EMR); of note, this work is not de-
pendent on the EMR,whichwas not present in the
study hospitals.

Recent approaches to electronic surveillance of a
range of diseases from hospitals have shown
promise. A major study demonstrated superiority
ofNLPof theEMR for surveillance of postoperative
complications compared with the more widely
used diagnostic codes (eg, sensitivity 82% v 38%
for acute renal failure).22 NLP was recognized to
have the added benefit of timeliness and the po-
tential to detect while the patient is still in the
hospital,22,23 a characteristic also relevant to IMD
because of the risk of hospital acquisition and/or
outbreaks associated with these infections.24

Table 4. Characteristics of Patients With and Without IMD

Characteristic IMD Group Control Group

No. of patients 64 (52) 59 (48)

Male sex 39 (61) 27 (46)

Mean age, years (range) 53 (24-89) 51 (18-89)

Underlying disease

AML 24 (38) 30 (51)

ALL 10 (16) 12 (20)

Lymphoma 14 (22) 7 (12)

Chronic leukemia 6 (9.4) 1 (1.7)

MDS/transformed MDS 6 (9.4) 2 (3.4)

Multiple myeloma 2 (3.1) 3 (5.1)

Other 2 (3.1) 4 (6.8)

Neutropenia (< 0.5 cells/L) present 55 (86) 42 (71)

Median duration of neutropenia, days (IQR) 17 (13-26) 18 (10-25)

HSCT 34 (53) 27 (46)

Allogeneic 29 of 34 (85) 21 of 27 (78)

Autologous 5 of 34 (15) 6 of 27 (22)

Characteristic of IMDs (n = 64) NA

Probable and/or proven IMDs 26 (41)

Possible IMDs 38 (59)

Site of infection

Lung 54 (84)

Sinopulmonary 3 (4.8)

Sinus 1 (1.6)

Hepatosplenic 2 (3.2)

Disseminated 4 (6.3)

Organism

Aspergillus fumigatus 9

Nonfumigatus Aspergillus species
(A. niger, A. flavus)

2

Fungal hyphae resembling Aspergillus
species

3

Scedosporium species 4

Any positive PCR 4

Rhizopus species 3

Other molds (Acrophialophora
fusispora, Paecilomyces lilacinus)

2

Candida glabrata (coinfection with
Scedosporium prolificans fungemia)

1

NOTE. Data presented as No. (%), except as otherwise indicated.
Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; HSCT, hematopoietic
stem-cell transplantation; IMD, invasive mold disease; IQR, interquartile range; MDS, myelodysplastic
syndrome; NA, not applicable; PCR, polymerase chain reaction.
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The quality of source data is another challenge of
electronic surveillance. Antifungal drug–dispensing
data were least valuable, partially because of their
format (pharmacy dispensing is not equivalent to
bedside electronic prescribing), and they lacked
the specific reasons for drug choice (ie, prophy-
laxis, empirical, pre-emptive, or targeted therapy).
An audit of a computerized decision support sys-
tem (CDSS) for antifungal drug prescriptions in
pediatric hematology-oncology patients demon-
strated the superiority of CDSS for inpatient fungal
surveillance over coding data,25 but its usefulness
is entirely dependent on prescriber adherence
(ie, where prescribers enter their justification for
drug choice) with the CDSS.

Other approaches to disease surveillance have
combined diagnostic codes with NLP.26,27 For
hepatocellular carcinoma, diagnostic codes were
used as a first level of identification, with NLP
subsequently applied to pathology and radiology
reports to improve case ascertainment.27 For
pneumonia, DeLisle et al28 combined a text clas-
sifier with EMR-derived structured data that in-
cluded clinical features anddiagnostic codes. The
addition of text classification of chest radiograph
reports increased the positive predictive value of
EMR-based case-detection algorithms by 20%
to 70%, while retaining sensitivities of 58% to
75%.28 Ahmed et al29 used a combination of
search term queries of an EMR along with ex-
traction of vital signs, medications, and labora-
tory values to identify a variety of acute conditions
including sepsis, pneumonia, aspiration, acute

pancreatitis, and shock, which are risk factors
for acute respiratory distress syndrome. For
sepsis, they observed that an automated algo-
rithm that combined NLP, vital signs, and lab-
oratory values had a higher sensitivity than NLP
alone, which was used in another study (95% v
88%).30 In common among these studies is the
improved disease prediction by combining mul-
tiple sources of data (structured and unstruc-
tured)withNLP, and, indeed, our study supports
this approach.

Our study has several limitations. Themodest data
set of 64 case patients was a major limitation, but
emblematic of the difficulties acquiring large
training data sets for a disease for which rou-
tine epidemiologic surveillance does not exist. The
probabilities from the text classifier were derived
from our earlier work11 rather than acquired in a
pipeline approach with sequential classifiers op-
erating; however, this should not have appreciably
changedouroverall findings.Ourcasepatientsdid
not exclusively have proven or probable IMD (de-
spite the fact that these represented a higher de-
gree of certainty) for several reasons: possible IMD
cases (those with radiologic features but lacking
positive microbiology) represent a substantial
burden in clinical practice and may predominate
(up to 90%) in some centers2,31; possible IMD
cases are treated similarly to proven and/or prob-
able IMD cases and consume equivalent health
care resources (eg, diagnostics, antifungal drug
use),1 and their exclusion would underestimate
the true prevalence of IMD. Notably, all case
patients underwent expert adjudication in ac-
cordance with international definitions.14 We
focused on the highest-risk population, and lim-
ited generalizability to other risk groups (eg, solid
organ transplant). Finally, our data set was
enriched with positive cases, but external pro-
spective validation of the expert system in clinical
practice where prevalence rates are lower, and
among diverse patient groups, will be the focus of
future work.

A disease with an evolving epidemiology associ-
ated with the introduction of novel cancer thera-
peutics, expanded transplantation services, an
aging population, and neglected groups such as
children, requires a surveillance system with the
agility to keep pace with change. An electronic
surveillance system could meet this demand,
particularly with the increasing digitization of
health care. Our expert system using the wealth
of electronic data available in hospitals could be
used to flag patients with IMD for further review.
The addition of other data analytics to our
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expert system, such as image analysis of CT
scans, is an area of active research32 that
we hope will improve the performance of the
expert system and provide decision support
for a range of activities, including radiologic

diagnosis and antifungal stewardship pro-
grams in hospitals.8
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