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Abstract

Time series classification maps time series to labels. The

nearest neighbour algorithm (NN) using the Dynamic Time

Warping (DTW) similarity measure is a leading algorithm

for this task. NN compares each time series to be classified to

every time series in the training database. With a training

database of N time series of lengths L, each classification

requires ϑ(N · L2) computations. The databases used in

almost all prior research have been relatively small (with

less than 10, 000 samples) and much of the research has

focused on making DTW’s complexity linear with L, leading

to a runtime complexity of O(N · L). As we demonstrate

with an example in remote sensing, real-world time series

databases are now reaching the million-to-billion scale. This

wealth of training data brings the promise of higher accuracy,

but raises a significant challenge because N is becoming the

limiting factor. As DTW is not a metric, indexing objects

induced by its space is extremely challenging. We tackle this

task in this paper. We develop TSI, a novel algorithm for

Time Series Indexing which combines a hierarchy of K-means

clustering with DTW-based lower-bounding. We show that,

on large databases, TSI makes it possible to classify time

series orders of magnitude faster than the state of the art.

Keywords: Time series classification, time series indexing,

dynamic time warping

1 Introduction

The European Space Agency’s Sentinel-2 satellites pro-
vide a full picture of Earth, every 5 days, at 10m reso-
lution [2]. This and the corresponding NASA Landsat-
8 programs introduce unprecedented opportunities to
monitor the dynamics of any region of our planet over
time and understand the constant flux that underpins
the bigger picture of our world (more details at www.

esa-sen2agri.org/SitePages/EOData.aspx). A high
resolution satellite view of Houston city taken by the
Sentinel-2A satellite, obtained from the Sentinels Scien-
tific Data Hub (https://scihub.copernicus.eu/s2)
is shown in Figure 1.

All images from these satellites are, by default, ge-
ometrically and radio-metrically corrected. Geometric
corrections ensure that every pixel (x, y) always maps
to the same geometric area. Radiometric corrections en-

Figure 1: High-resolution image of Houston city near
Westin Galleria taken by Sentinel-2A. c© Copernicus
Sentinel data [2016] for Sentinel data.

sure that the spectral information is comparable from
one image to the next of the series. This provides for
each geographic coordinate on Earth, a time series of the
“colours” that it underwent over the study period. One
of the core tasks is to create temporal land-cover maps
that describe the evolution of an area over time. This
task is summarized in Figure 2: mapping the spectral
evolution of a “pixel” (geographic coordinate) to a land-
cover class such as “wheat crop”, “broad-leaved tree” or
“urban”. Evolution is critical because, from space, all
crops look the same; what makes it possible to correctly
differentiate one from another is the temporal evolution
(when the crop grows, when it is harvested etc.).

Quite simply, research into time series classification
lags behind the demands of modern space imagery,
which produce terabytes of data each day. Why? Most
research into time series classification has addressed
datasets that hold no more than 10 thousand time series
[7]. In contrast, the Sentinel-2 satellite provides over 10
trillion time series, capturing Earth’s land surfaces and
coastal waters at resolutions of 10 to 60m [2]. Although
much research has gone into classifying remote sensing
images, few studies have analysed time series extracted
from sequences of satellite images.

The go-to time series classification method in terms
of accuracy for this type of task is Nearest Neighbour
coupled with Dynamic Time Warping (NN-DTW) [25,
26]. This is for two main reasons: (1) many phenomena
of interest – vegetation cycles, for instance – have a

www.esa-sen2agri.org/SitePages/EOData.aspx
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Figure 2: Production of a time series datasets from satellite image series.

periodic behaviour which can be slightly modulated
by weather artifacts. These modulations result in
distortions of canonical temporal profiles that are well
handled by DTW [20]. (2) Time series are too short for
Bag-of-word-type approaches [28, 29] to perform best.

NN-DTW cannot scale to the typical size of satellite
datasets where it is common to have 100 million example
time series [9, 10]. This is because to classify each
query time series, we have to scan the entire 100 million
training dataset. Even making the most of lower-
bounding [12, 15], this is completely infeasible. Figure 3
illustrates this point: while all datasets of the standard
archive of time series [7] can be classified in less than
30 minutes, creating a temporal land-cover map for just
a city like Houston (16 million time series) assuming a
bare minimum of 1 million training examples would take
about a year to complete. To create a land-cover map of
Texas (7 billion time series) with a reasonable training
dataset of 100 million samples would require 30k years
of computation.

With these motivations, this work tackles Con-
tract Time Series Classification, where we would
like to produce the most accurate classifier under a con-
tracted time (obviously significantly smaller than run-
ning the NN-DTW). We propose a new algorithm that
efficiently indexes the training database using a hierar-
chical K-means tree structure specifically designed for
DTW. We will show that our algorithm reduces the time
per query while retaining similar error to the state of the
art, NN-DTW.

This paper is organized as follows. In section 2, we
review some background and define the problem state-
ment for our work. Then in section 3 we introduce and
describe our approach. Section 4 shows the empirical
evaluation for our approach. Lastly, section 5 offers
some direction for our future work and we conclude our
work in section 6.

2 Background and Motivation

2.1 Time Series Classification Many time se-
ries classification algorithms in the literature such as
Shapelets [23, 33], 1-NN BOSS [28] and SAX-VSM [29]
have been shown to be competitive (and sometimes su-
perior) to the state of the art, NN-DTW.

Nonetheless, as explained in the introduction, clas-
sification of the Satellite Image Time Series (SITS) is
better tackled by NN-DTW. NN-DTW has been shown
to be extremely competitive for many other applications
[4, 19, 20, 22, 24, 30, 31]. It has been argued that the
widespread utility of NN-DTW is due to time series data
having autocorrelated values, resulting in high apparent
but low intrinsic dimensionality. Experimental compar-
ison of DTW to most other highly cited distance mea-
sures on many datasets concluded that DTW almost
always outperforms other measures [30].

Figure 3: Average NN-DTW Classification Time on
different datasets



2.2 Nearest Neighbour Search The nearest neigh-
bour (NN) classifier (out of the context of time series)
is one of the simplest classification algorithms but is
nonetheless highly effective. It is a non-parametric, lazy
learning algorithm and does not require any abstrac-
tion/training phase on the training dataset [27]. Its
behaviour is also very interesting for large datasets, as
its bias vanishes in the limit when the dataset size in-
creases. k-NN classifier finds k nearest neighbours of
the query in the training dataset and returns the dom-
inating class as the class for the query sample [27].

Despite its nice behaviour in the limit, k-NN has the
major drawback of not being scalable: it has to compare
the query sample to all samples in the training dataset,
which is infeasible for most large datasets.

An efficient and popular method of scaling up NN
classification on large datasets is to use the k-d tree
structure, where k is the dimensionality of the Euclidean
search space [5]. k-d tree allows faster retrieval of
the nearest neighbour to the query sample in a short
amount of time. It is very efficient in the Euclidean
space. However, it is not applicable for DTW-induced
space as k-d tree partitions each dimension of the
data recursively while DTW makes associations across
dimensions. Because of that, k-d tree will not be
applicable to NN-DTW for time series classification.

A large amount of research has been done to scale
up NN-DTW for time series classification such as early
abandoning [13] and lower bounding [12, 15, 22]. As
DTW has time complexity of O(n2), these methods
speed up classification by minimizing DTW computa-
tions. In this work, we focus on approximate nearest
neighbour search, where it is typical to be two or more
orders of magnitude faster than linear search [17].

Approximate nearest neighbour search algorithms
index the data in the training dataset in a systematic
manner so that the query sample will be compared
to only a few promising candidates from the training
dataset within a given time. It may not return the
actual nearest neighbour, but with sufficient data it is
highly likely that the approximate nearest neighbour
will be of the same class.

The Priority Search K-means Tree (PSKMT) algo-
rithm [17] is a recent breakthrough approach to nearest
neighbor search that performs a priority search in a hi-
erarchy of K-means clusterings. It has high precision
on large high dimensional datasets and is still one order
of magnitude faster than previous approximate search
algorithms [16, 17]. The algorithm outperforms exist-
ing approximate nearest neighbour algorithms on the 31
million sample SIFT dataset [17]. This algorithm offers
an incredible opportunity for time series because, unlike
k-d trees, it does not require that the data be tabular.

This paper adapts and extends PSKMT to time se-
ries creating a novel efficient time series classification
algorithm. Such adaptation was not possible before be-
cause K-means clustering was ill-defined for the DTW-
induced space. Hence, we leverage our recent work
on clustering time series consistently for DTW [19, 21]
using DTW Barycenter Averaging (DBA) and adapt
PSKMT to make the most out of the available lower
bound for DTW. DBA has been extensively studied in
[18, 19, 21] and a proof of convergence can be found in
[18, 19].

Our experiments demonstrate that our method
makes it possible to classify large time series datasets
two orders of magnitude faster than the state of the
art, NN-DTW with LB Keogh [11, 12].

2.3 Contract Time Series Classification In re-
cent years there has been an increasing interest in us-
ing any-time algorithms for data mining [14, 32]. How-
ever, the variant known as contract algorithms have re-
ceived less attention. Contract algorithms are a special
type of any-time algorithms that require the amount
of run-time to be determined prior to their activation.
In other words, contract algorithms offer a trade-off be-
tween computation time and quality of results, but they
are not interruptible.

Problem Statement Contract Time Series Clas-
sification: produce the most accurate time series classi-
fier given (1) set constraints on computational resources
available at classification time and (2) no constraints on
computational resources at training time.

We assume that the computational resource con-
straint will be time, not space, and that it will be given
to us in the form of the number of CPU cycles available
for each query to classify. We assume that the constraint
will be given as a positive integer L which is the number
of time series to examine; for ease of exposition, we will
report the result of our algorithm on different datasets
at regular time intervals (i.e. with different L).

3 Our approach: DTW-indexing of time series
for classification

Our algorithm, Time Series Indexing (TSI) is an adap-
tation of Priority Search K-means Tree (PSKMT) [17]
to index time series embedded in a space induced by
DTW. The general outline is as follows.

At training time, we construct a hierarchy of
K-means clusterings over the training dataset; this
prepares the indexing data structure that will allow
fast querying at testing time. The K-means clustering
is performed using DTW as the similarity measure for
associating time series to their closest centroids. DBA
[19, 21] is used to create and refine the centroids from



Algorithm 1: build tree(D,K, Imax, w)

Input: D: Time series dataset
Input: K: Branching factor
Input: Imax: Maximum k-means iterations
Input: w: Warping window

1 if |D| ≤ K then create leaf(D) ;
2 else
3 P = kmeanspp(D,w);
4 for iterations = 1 : Imax do // k-means

5 C = assign to centroids(P,D,w);
6 for all Ci ∈ C do Pi = DBA(Pi, Ci, w) ;

7 end
/* recursively build tree */

8 for all Ci ∈ C do build tree(Ci,K, Imax, w) ;

9 end

the associated time series in the expectation phase.
At testing time, we maintain three priority

queues. The first two queues store the potential
branches to explore once exploration of the current
branch is complete. The first stores those for which full
DTW to the query has been calculated and the second
stores those for which only lower bound have been com-
puted. The third queue stores the nearest neighbours.

Since we prune off DTW with lower bound (LB),
having 2 priority queues ensures that we always traverse
from the actual closest branch without having to com-
pute the full DTW distance for all potential branches.
We start by descending the tree from the root to the first
leaf, at each internal node following the branch closest
to the query but pushing the alternatives to the prior-
ity queues. Those alternatives that can be excluded just
on the lower bound go to the second queue while those
for which the full DTW distance is computed go to the
first queue. We explore the leaf, and then proceed to
the closest branch that was not explored on the path
to that leaf (stored as the head of the first queue). We
continue in this cycle, stopping when we have exhausted
our “contracted time” (or have explored the full tree).

Algorithm 1 presents the algorithm for building the
tree. The root node contains all the training data.
The algorithm recursively clusters the data associated
to each node intoK clusters. A branch is formed leading
to each of the K child nodes, each child node associated
with the data in one cluster. The branch is labelled
with the DTW average of the time series in the node
to which it leads. The data associated with each child
node is then clustered into K sub-clusters; and so on
recursively. All nodes are labelled with the majority
class of the data associated with them. This allows the
algorithm to give a plausible class prediction even when

Algorithm 2: assign to centroids(P,D,w)

Input: P : Cluster centroids
Input: D: Time series dataset
Input: w: Warping window
Output: cluster: Clusters of time series

1 cluster = ∅;
2 for all Si ∈ D do
3 nearest p = search nearest lb(Si, P, w);
4 cluster[nearest p].add(Si);

5 end
6 return cluster;

we have not yet reach a leaf node. Every recursion
is initialized using the standard non-deterministic K-
means++ algorithm [3]. The recursion stops when a
node contains K or fewer time series.

To further speed up the clustering pro-
cess, LB Keogh is used with NN-DTW in the
search nearest lb sub-routine to assign each time
series to the nearest cluster centroid, as described in
Algorithm 2. Our algorithm is not limited to just
LB Keogh. It can be used with any DTW lower bound-
ing functions such as LB Improved [15], depending
on the application. In this work, we chose to use
LB Keogh because in general, it performs well for most
time series datasets.

Algorithm 3 describes the tree search algorithm.
The tree is searched by first traversing down the tree
to the first leaf node, outlined in Algorithm 4. At each
level of the tree, the algorithm proceeds with the near-
est branch to the query time series. To efficiently search
for the nearest branch, we first sort all the branches in
ascending lower-bound distance to the query, then use
NN-DTW to find the closest branch. This further min-
imizes DTW computations. The unexplored branches
where DTW have been computed will be enqueued into
the DTW priority queue while the remaining ones will
be enqueued into the LB priority queue. These priority
queues are implemented as min-heaps [6], with standard
enqueue and dequeue functions.

When the query reaches a leaf node, the algorithm
searches for the nearest time series using the same
method as searching for the nearest branch. The k
nearest time series found in the search so far are kept in
the nearest neighbour priority queue, implemented as a
max-heap. A max-heap allows faster retrieval of the kth

nearest neighbour from the query.
After exploring the leaf node, the algorithm pro-

ceeds to the next branch by dequeuing the DTW prior-
ity queue. Both DTW and LB priority queues are com-
pared to ensure that the closest branch to the query is



Algorithm 3: search tree(T,Q,L,w)

Input: T : Hierarchical k-means tree
Input: Q: Query time series
Input: L: Number of time series to examine
Input: w: Warping window
Output: kNN : k nearest neighbours

1 Initialize priority queues & seen=0
2 W = envelope(Q,w);
3 traverse tree(T,Q,W,PQs, L, seen,w);
4 while (PQs not empty) && (seen < L) do

/* find nearest branch */

5 while lb PQ.top < dtw PQ.top do
6 lb branch = lb PQ.dequeue;
7 d = DTW (Q, lb branch.Centroid, w);
8 dtw PQ.enqueue(lb branch);

9 end
10 if dtw PQ not empty then
11 T = dtw PQ.dequeue;
12 traverse tree(T,Q,W,PQs, L, seen,w);

13 end

14 end
15 kNN = nn PQ.getAllData;
16 return kNN ;

in the DTW priority queue: if the head of the LB prior-
ity queue is smaller than the head of the DTW priority
queue, we dequeue that branch, compute its DTW dis-
tance and enqueue it into the DTW priority queue. The
algorithm stops searching the tree when it has seen at
least L time series from the leaf nodes. Here, L can also
represent the “contracted” classification time.

Our source code has been uploaded to Github1.

4 Empirical Evaluation

In this section, we comparatively assess the performance
of our algorithm for large-scale time series classification
against the state-of-the-art method:

• LB Keogh NN-DTW: This is the state-of-the-
art approach of doing NN-DTW [11, 12] and serves
as the baseline algorithm in this work. Time
series are taken one by one: if their lower-bound
distance to the query is greater than the best-so-far
neighbour, then the time series is pruned and the
method proceeds to the next series, else its actual
DTW distance with the query is computed and it
becomes the best-so-far neighbour if it is closer than
the current best-so-far. Because the pruning power
depends on how close are the neighbours found

1https://github.com/ChangWeiTan/TSI

Algorithm 4: traverse(T,Q,W,PQs, L, seen,w)

Input: T , Hierarchical k-means tree
Input: Q, Query time series
Input: W , Envelope for query time series
Input: PQs, dtw PQ, lb PQ and nn PQ
Input: L, Number of time series to examine
Input: seen, Time series seen so far
Input: w, Warping window

1 if N is Leaf then
2 S = T.getAllData;
3 lb distance = sort with lb(W,S);
4 for all Si ∈ S do
5 worst d = nn PQ.firstDistance;
6 if lb distancei < worst d then
7 d = DTW (Q,Si, w);
8 if d < worst d then

nn PQ.enqueue(Si, d) ;

9 end
10 if + + seen == L then break;

11 end

12 else
13 C = T.getChildren;
14 dtw flag = [false, ...false];
15 best so far = inf;
16 distances = sort with lb(W,C);
17 for all Ci ∈ C do
18 if distancesi < best so far then
19 distancesi = DTW (Q,Ci, w);
20 dtw flagi = true;
21 if distancesi < best so far then
22 best so far = distancesi;
23 Cq = Ci;

24 end

25 end

26 end
27 for all Ci ∈ C except Cq do
28 if dtw flagi then

dtw PQ.enqueue(Ci, di) ;
29 else lb PQ.enqueue(Ci, di) ;

30 end
31 traverse tree(Cq, Q,W,PQs, L, seen,w);

32 end

early in the search, we report the average results
over 10 different shuffling of the data.

• Time Series Indexing (TSI): This is our pro-
posed method described in Section 3. As we use the
non-deterministic K-means++ [3] initialization, we
report the average results over 10 different runs.



Since our task is contract classification, we provide – for
all methods – their results at different time intervals. It
is worth noting that the results for all methods tend
to the full NN-DTW as the time constraint tends to
infinity. Our experimental datasets and results have
been uploaded to [1].

Our experiments are divided into two parts:

A. First, we begin with a real world case study to show
the practical utility of our technique.

B. Then, we assess the performance of the different
methods on a diverse range of datasets. We
show that our approach is more accurate than the
conventional approach under a contracted time.

A. Satellite Image Time Series (SITS) Classi-
fication As motivated in the introduction, the new-
generation Earth Observation (EO) satellites have be-
gun imaging Earth frequently, completely and in high-
resolution. This introduces unprecedented opportuni-
ties to monitor the dynamics of any regions on our
planet over time and revealing the constant flux that
underpins the bigger picture of our world.

To the best of our knowledge, there has been lit-
tle prior research into the classification of time series
extracted from satellite image series – also called Satel-
lite Image Time Series (SITS). The ability to monitor
and classify these time series will have strong impact
in many domains especially in the agriculture industry,
marine applications and for environment monitoring. In
prior work [20], we showed that DTW is a good measure
for such time series, because of the non-linear distor-
tions of prototypical ground surfaces, i.e., the fact that
two neighbouring surfaces might have slightly different
growth rates, although belonging to the same class of
crop/tree.

In this work, we used 46 geometrically and radio-
metrically corrected images taken by FORMOSAT-2
satellite. These images are corrected such that every
pixel corresponds to the same geographic area on Earth.
Each of these images consists of 1 million pixels and each
pixel represents a geographic area of 64m2, resulting in
an area of 64km2 per image. Each geographic area (x, y)
(∼pixel) in the image forms a time series with a length
of 46, creating a dataset with 1 million time series.
The series have been manually collected by experts in
geoscience by a mix of photo-interpretation, ground
campaigns and urban databases. All time series thus
have a label about their temporal class such as “wheat”,
“maize”, “broad-leaved tree”, etc. The formation of
Satellite Image Time Series is illustrated in Figure 2,
labelled with their temporal classes, represented in
different colours.

Table 1: Properties of 1 Million SITS dataset

SITS 1 Million

Length 46
Size of Dataset 1,000,000
Number of classes 24
Warping window size 4
1-NNDTW Error-Rate (10 fold cv) 0.168

To ensure reproducibility of our results and encour-
age researchers to work on large time series datasets, we
have obtained permission from the CesBIO and French
Space Agency to make our satellite dataset available
online in [1]; note that this is a very high-cost dataset
(images are worth more than USD100,000 and collect-
ing the labels required months of work) which we hope
will be a significant motivation to the field. As there
are no pre-defined train/test sets for this dataset, we
used 10-fold cross validation results. In this experiment,
a warping window of 4 was used: this is aligned with
the phenology of observed phenomena for which similar
stages of growth cannot be distant by more than about
a month [20]. The properties of this dataset that will
be used in this case study are shown in Table 1.

The case study was conducted by varying the
contract time from the least to the more permissive,
i.e. with more and more time allowed in the contract
to perform the classification of each query until we have
gone through the whole training dataset. We record the
error for each query as we go through the whole training
dataset. Note that at smaller time intervals, TSI was
not able to predict the error because the algorithm has
not reached a leaf node. In this case, we predict the
error using the majority class of the time series set in
the nearest branch explored to date.

We present our results in Figure 4 where the x-axis
is in log-scale. The first element to note is that our
algorithm, TSI is significantly better than the state of
the art; having its curve consistently under the state of
the art. Second, we can see that if we had a ‘contract’ to
classify each time series in no more than 1ms, then TSI
would obtain error rate of 0.195 as opposed to 0.374.
The same observation holds for 0.1ms (error of 0.283 vs
0.5), 10ms (error of 0.178 vs 0.287) and 100ms (error of
0.17 vs 0.220).

This is a very important result: imagine if you were
satisfied with an average error-rate of 0.2, then using
our approach would classify each query within 1ms,
as opposed to 500ms for the state-of-the-art approach.
Having a million time series to classify, this would
translate to our approach, TSI finishing in 17 minutes
as opposed to 138 hours for LB Keogh NN-DTW; a 500



Figure 4: Comparative results on our 1 million SITS
showing the average error rate per query as we go
through the whole training dataset

times speed-up. It is only when getting to the far right
of the curve that the overheads of TSI – linked to the
exploration of the tree and maintenance of the priority
queues – would become disadvantageous. This makes
sense because if the contract is that you have the time
to explore all of the training set, then you might as well
just do that rather than using our approximate search.

Another point to note in Figure 4 is the slight jump
in error for TSI at approximately 0.2ms. This is when
the first leaf is expanded and the first class of an actual
example is used in place of the majority class of a
traversed branch.

B. Contract Time series classification To show
that our algorithm, TSI can classify more accurately
within a contracted time, we run a statistical compari-
son of classifiers [8] on all the datasets from the standard
UCR time series archive2 [7] plus our SITS dataset, all
together 85 datasets. We use the train/test split from
[7] and warping window size reported in [7] for the time
series archive. Note that, the datasets from the stan-
dard time series archive are relatively small, ranging
from training size of 20 to 1,800 [7]. The different clas-
sifiers are compared using the Wilcoxon Signed-Ranks
Test described in [8]. Wilcoxon Signed-Ranks Test is a
test which ranks the differences in performance of two
classifiers for each dataset [8]. We want to assess if 85
datasets is a large enough sample to show that our al-
gorithm is statistically different.

2We exclude ElectricDevices, as most series are identical
under time warping, thus preventing any clustering.

Similar to the methodology in our case study,
we record the error for each query at different time
intervals, for every dataset and algorithm. To make
the comparison fair for different datasets with different
training size, we align the time intervals on the time of
processing the whole dataset with LB Keogh NN-DTW.
We consider 6 time intervals from 1% to 50% (of the
time it takes LB Keogh NN-DTW to process one query).
Similarly at smaller time intervals, we use the majority
class of the nearest branch to predict the error. Let us
take an example to ensure that our methodology is clear.
We run LB Keogh NN-DTW for a dataset and found
that it takes, on average, 1s to classify a query. We then
study the error-rate of TSI at 10ms(1%), 100ms(10%),
etc. up to 500ms(50%).

Using the error-rate at these time intervals, we
calculate the difference in error-rate, di of LB Keogh
NN-DTW and TSI on the i-th out of the N datasets.
We then rank the differences by their absolute values at
each time intervals [8]. Average ranks are assigned in
case of ties [8]. These ranks are then used to calculate
R+ and R− using Equation 4.1 and 4.2 respectively [8].
R+ represents the sum of ranks for the datasets where
the second algorithm outperforms the first and R− the
opposite [8]. In our context, the first algorithm refers
to LB Keogh NN-DTW and the second refers to TSI.

(4.1) R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di)

(4.2) R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di)

With 85 datasets (N = 85), the critical value
is calculated using Equation 4.3 that is distributed
approximately normal [8]. To reject the null-hypothesis
(where the two algorithms perform equally well) with
α = 0.05, the test statistic has to be less than the critical
value, z < −1.96. The results are shown in the last
column of Table 2 where we reject the null hypothesis
highlighted in bold.

(4.3) z =
min(R+, R−)− 1

4N(N + 1)√
1
24N(N + 1)(2N + 1)

Table 2 shows the results of the statistical compar-
ison where we report the average rankings of LB Keogh
NN-DTW and TSI across all datasets at the different
time intervals and the Wilcoxon Test statistics. The
average ranking allows us to identify the better per-
forming classifier (emphasized in bold) if we reject the



Table 2: Wilcoxon Test Results
LB Keogh NN-DTW vs TSI

Average Ranks Wilcoxon Test Statistics
Intervals NN-DTW TSI R+ R− z

1% 1.529 1.471 2034.5 1620.5 -0.907
10% 1.841 1.159 3449 206 -7.105
20% 1.871 1.129 3451 204 -7.114
30% 1.806 1.194 3219.5 435.5 -6.099
40% 1.741 1.259 2903 752 -4.713
50% 1.671 1.329 2616 1039 -3.455

Average 1.743 1.257

null hypothesis. In this case, our algorithm, TSI per-
forms more accurately than the state of the art under
a contracted time. The results show that TSI is more
accurate than LB Keogh NN-DTW at all time intervals
except for 1%, where we are unable to reject the null hy-
pothesis. As the majority of datasets tested are small,
the algorithms are unable to find even an approximate
nearest neighbor at the 1% time interval, as a result of
which they predict the majority class. Note that if the
classes are very similar and the clusters do not well sep-
arate the classes, TSI can underperform LB Keogh NN-
DTW. This is, for example, the case for the Computers

dataset; the associated plot is available at [1].

5 Optimizing the Number of Clusters, K

From the experiments, we observed that the number of
clusters (branching factor), K is an important param-
eter that determines the convergence rate of the algo-
rithm. In our experiments K was chosen to be 3. Al-
though this is not the optimal K for the algorithm, we
had shown that TSI still outperforms the state of the
art if we just have 50% of the full 1-NN time.

However, we believe that for each dataset there ex-
ists an optimal K that allows the algorithm to converge
faster to the full 1-NN error rate. This will be a trade-
off between numerous factors. Larger K means that the
length of each complete branch in the tree will be shorter
and hence there will be fewer internal nodes to traverse
to reach the leaf nodes that contain candidate nearest
neighbors. However, it also means that at each inter-
nal node more DTW calculations must be performed to
select the branch to follow.

There are many potential ways to optimize K.
Here, we suggest an intuitive way to optimize K without
compromising the error rate of the algorithm. We can
vary K and record the average time per query to find the
exact nearest neighbor at each K value. Then, we keep
the K value that gives the minimum time per query.

6 Conclusion and Future Work

In this work, we have proposed the first algorithm
to index DTW-induced space and showed that it is
essential for the classification of time series when a
large amount of data is available. We demonstrated
that on a large remote sensing data where time series
classification is critical, we are able to obtain the same
accuracy up to 2 orders of magnitude faster than the
state of the art, NN-DTW search; we can thus classify
the entire 1 million dataset in 17 minutes instead of
5 days. This is extremely promising for larger remote
sensing datasets that contain hundreds of millions of
examples [9, 10].

Besides optimizing the branching factor, K, our
future work will also include speeding up the search
for the best warping window for large datasets and
improved approaches for selecting a branch to follow.
The current way of finding the best warping window, is
to repeat LB Keogh NN-DTW with different warping
windows, which is computationally expensive for large
datasets. With the fast error convergence rate of our
method, we can find the best warping window for large
datasets in a short amount of time.
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