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A Cultural Divide

Context: When discussing teaching Data Science with a well
known professor of Statistics.

She said: “when first teaching overfitting, | always give some
examples where machine learning has trouble, like
decision trees”

| said: “funny, | do the reverse, | always give examples
where statistical models have trouble”
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A Cultural Divide

Context: When discussing teaching Data Science with a well
known professor of Statistics.

She said: “when first teaching overfitting, | always give some
examples where machine learning has trouble, like
decision trees”

| said: “funny, | do the reverse, | always give examples
where statistical models have trouble”

ASIDE: our hierarchical smoothing also gives state of the art
results for decision tree smoothing
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State of the Art in Classification

Favoured techniques for standard classification are
Random Forest and Gradient Boosting (of trees).
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State of the Art in Classification

Favoured techniques for standard classification are
Random Forest and Gradient Boosting (of trees).

NB. for sequences, images or graphs, deep neural networks (recurrent
NN, convolutional NN, etc.) are better
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Main Claim

Main Claim: Hierarchical smoothing applied to Bayesian
network classifiers on categorical data beats Random Forest

Inot well shown in the paper ...
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Main Claim

Main Claim: Hierarchical smoothing applied to Bayesian
network classifiers on categorical data beats Random Forest

» a single model beats state of the art ensemble
» s also comparable with XGBoost!

» but only on categorical data
» though also for a lot of other data too!

1not well shown in the paper ...
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Unpacking the Main Claim

» Hierarchical smoothing
» using hierarchical Dirichlet models

» applied to Bayesian network classifiers
»> the KDB and SKDB family

» on categorical datasets
» or pre-discretised attributes

» beats Random Forest
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Reminder: Main Claim

» Hierarchical smoothing
» applied to Bayesian network classifiers
» the KDB and SKDB family

» on categorical datasets
» beats Random Forest
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Learning Bayesian Networks

tutorial by Cussens, Malone and Yuan, /JCA/ 2013

structure
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Bayesian Networks learning =

Structure learning + Conditional Probability Table estimation 2735



Bayesian Network Classifiers

Friedman, Geiger, Goldszmidt, Machine Learning 1997

» Defined by parent relation m and Conditional Probability
Tables (CPTs)

» 7 encodes conditional independence / structure
» 7 is the parent variables for X;
» CPTs encode conditional probabilities

» For classification, make class variable Y a parent of all X;
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Friedman, Geiger, Goldszmidt, Machine Learning 1997

» Defined by parent relation m and Conditional Probability
Tables (CPTs)

» 7 encodes conditional independence / structure
» 7 is the parent variables for X;
» CPTs encode conditional probabilities

» For classification, make class variable Y a parent of all X;
» Classifies using P(y | x) o< P(y | my) [[P(xi | i)
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k-Dependence Bayes (KDB)

Sahami, KDD 1996
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NB. other parents also selected by mutual information
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Learning k-Dependence Bayes (KDB)

» Two pass learning
P> 1st pass, learn structure m:

» Uses variable ordering heuristics based on mutual information,
so efficient and scalable.
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Learning k-Dependence Bayes (KDB)

» Two pass learning
P> 1st pass, learn structure m:
» Uses variable ordering heuristics based on mutual information,
so efficient and scalable.
» 2nd pass, learn CPTs:

» Collect statistics according to the structure learned.
» Form CPTs using Laplace smoothers, or m-estimation.

» With simple CPTs is exponential family so inherently scalable.
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Selective k-Dependence Bayes (SKDB)

Martnez, Webb, Chen and Zaidi, JMLR 2016

But, how do we pick k in KDB, and how do we select which
attributes to use?
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Selective k-Dependence Bayes (SKDB)

Martnez, Webb, Chen and Zaidi, JMLR 2016

But, how do we pick k in KDB, and how do we select which
attributes to use?

» Use Leave-one-out cross validation (LOOCV) on MSE to
select both k and which attributes to use.

» Requires a third pass through the data to compute LOOCV
MSE estimates of probability and minimise.

> As efficient as previous passes.
» Called SKDB.
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Learning Curves: Typical Comparison

w==Naive Bayes
KDB k=1
w=KDB k=2
e KDB k=3
e KDB k=4
0.7 - ==KDB k=5
@===SKDB Only K
e==SKDB k=5 Only Atts
0.6 - w==SKDB
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Reminder: Main Claim

» Hierarchical smoothing
» using hierarchical Dirichlet models

» applied to Bayesian network classifiers
» on categorical datasets
» beats Random Forest
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Why doing Hierarchical Smoothing?
|
» You want to predict disease as a function of some rare gene G

and sex, knowing that this disease is more prevalent for
females

#patients without disease

{ F#patients with disease }

doesn’t have gene
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and sex, knowing that this disease is more prevalent for
females

#patients without disease

{ F#patients with disease }

doesn’t have gene

p(disease|has-gene & male)?
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Why doing Hierarchical Smoothing?
|
» You want to predict disease as a function of some rare gene G

and sex, knowing that this disease is more prevalent for
females

#patients without disease

{ F#patients with disease }

doesn’t have gene

PLaplace = 33%
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{ F#patients with disease }
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None of them use the fact that 91% of the patients
with that gene have the disease! 1435



Why doing Hierarchical Smoothing?

» You want to predict disease as a function of some rare gene G

and sex, knowing that this disease is more prevalent for
females

#patients without disease

[ F#patients with disease }

The idea of hierarchical smoothing/estimation is to make
each node a function of the data at the node and the

estimate at the parent.
fema

% p(disease|has gene & male) ~ p(diseaselhas gene)
10-0 p(diseaselhas gene) ~ p(disease)

None of them use the fact that 91% of the patients

with that gene have the disease! 1435



Hierarchical Smoothing

Hierarchical Smoothing: When smoothing parameters in
the context of a tree, use parent or ancestor parameters
estimates in the smoothing.
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Hierarchical Smoothing

» You add prior parameters ¢ representing prior probability

vectors for all ancestor nodes.

doesn't have gene

¢ [¢ disease|— has—gene}

female

[Qdisease |has-gene, female} [edisease |has-gene, male}
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Hierarchical Smoothing

» You add prior parameters ¢ representing prior probability

vectors for all ancestor nodes.

doesn't have gene

the leaf variables 6 are models parameters for the leaf probabilities

» our task is to estimate these

ICII? Jiaic ~
1 ~
~

[Qdisease |has-gene, femalej [edisease |has-gene, malej
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Hierarchical Smoothing

» You add prior parameters ¢ representing prior probability

vectors for all ancestor nodes.

doesn't have gene

¢

disease|has-gene

female male . S
the ancestor variables ¢ are prior parameters used in estimating the
Odise: leaf probabilities

» these are beliefs not frequencies

» they do not correspond to frequencies at the ancestor nodes
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Hierarchical Smoothing Model

Use Dirichlet distributions hierarchically.
» use Dir (0, «) to represent a Dirichlet with parameter a6
» normalised probability vector

» concentration (inverse variance) «
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Hierarchical Smoothing Model

Use Dirichlet distributions hierarchically.
» use Dir (0, «) to represent a Dirichlet with parameter a6
» normalised probability vector

» concentration (inverse variance) «

Use the pattern:

O(node) | ¢(node) ~ Dir (¢(parent), a(node))
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Hierarchical Smoothing Model, cont.

Leaf probabilities:

0XC|.y7X1a"' sXn ~ Dlr (¢XC|y7X1"" 3Xn—17 ay7X17“. VXn)
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Hierarchical Smoothing Model, cont.

Leaf probabilities:

0XC|.y7X17"' sXn ~ Dlr (¢XC|y7X1"" 3Xn—17 ay,Xl,"‘ 7X”)

Prior probabilities:

1 -
~ Dir|{ —1, «
o (3t )
¢Xc|y ~ Dir (¢Xc? ay)

¢Xc|y,X1,"' »Xn—1 ~ Dlr (ngC‘y’Xl"" »Xn—27 ay7X17'“ 7Xn71)
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Smoothing Formula

Smoothed probability estimates work back down the tree from the
root using the pattern:

p(node) o< count(node) + p(parent) x a(node)
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Smoothing Formula

Smoothed probability estimates work back down the tree from the
root using the pattern:

p(node) o< count(node) + p(parent) x a(node)

Yielding:
Ny + e
3 = e lIXIT
Yy = —C
¢ n. + «ap
& | = Mxcly x, oxi + ¢Xc\y7><1,"',Xi—la%Xl,'",Xi
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Smoothing Formula

Smoothed probability estimates work back down the tree from the
root using the pattern:

p(node) o< count(node) + p(parent) x a(node)

Yielding:
Ny + e
3 = e lIXIT
Yy = —C
¢ n. + g
& | = Mxcly x, oxi + ¢Xc\y7><1,"',Xi—la%Xl,"',Xi
Xely, Xt xi
e My xi, o T Qyxa,e xi
) nXC|y7X17'" »Xn + ¢XC|.V:X17"' 7x,,,1ay,xl,~-~ sXn

)
Xcly’xl,..' 7Xn
n'|Y7X17"' »Xn + a)/7X1»"' »Xn

But how do we get the estimates gz@xc‘ym,.,.,xl. 7
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Hierarchical Dirichlet

The Dirichlet distribution corresponds
to a Dirichlet process with a discrete
base distribution.

20/35



Hierarchical Dirichlet

The Dirichlet distribution corresponds
to a Dirichlet process with a discrete
base distribution.

We use a hierarchical Dirichlet processes (HDP) to
handle the hierarchical Dirichlet distributions.
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Historical

1990s-2003:
2006:

2006-2011:

But:

Context for HDP

Pitman and Ishwaran and James in mathematical
statistics develop theory.

Teh, Jordan, Beal and Blei develop HDP, e.g. applied
to LDA.

Chinese restaurant processes (CRPs) go wild!

P require dynamic memory in implementation,
e.g. Chinese restaurant franchise, stick-breaking, etc.

very slow, require large amounts of dynamic
memory.
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Historical Context for HDP

1990s-2003: Pitman and Ishwaran and James in mathematical
statistics develop theory.

2006: Teh, Jordan, Beal and Blei develop HDP, e.g. applied
to LDA.

2006-2011: Chinese restaurant processes (CRPs) go wild!

P require dynamic memory in implementation,
e.g. Chinese restaurant franchise, stick-breaking, etc.

But: very slow, require large amounts of dynamic
memory.

popularity of HDPs has decreased!
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Historical Context for HDP, cont.

2011: Chen, Du, Buntine show slow methods not needed by
introducing collapsed samplers.

2011: Buntine (unpublished) develops high performance
algorithm for HDP and n-grams.

2014: Buntine and Mishra develop high performance
algorithm for HDP and topic models.

22/35



Historical Context for HDP, cont.

2011: show slow methods not needed by

introducing collapsed samplers.

2011: (unpublished) develops high performance
algorithm for HDP and n-grams.

2014 develop high performance
algorithm for HDP and topic models.

» We use high performance techniques for the hierarchical
Dirichlet process (HDP) to do inference.

» outperforms Stochastic Variational Inference on some tasks

» This uses a (fairly) efficient Gibbs sampler.
» no dynamic memory
» with variable augmentation and caching

P Details in the paper.
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Main Claim

» Hierarchical smoothing

» applied to Bayesian network classifiers

» on categorical datasets
» or pre-discretised attributes

» beats Random Forest
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UCI Datasets

Domain Case Att Class Domain Case Att Class
Connect-4Opening 67557 43 3 PimalndiansDiabetes 768 9 2
Statlog(Shuttle) 58000 10 7 BreastCancer({ Wisconsin) 699 10 2
Adult 48842 15 2 CreditScreening 690 16 2
LetterRecognition 20000 17 26 BalanceScale 625 5 3
MAGICGammaTelescope 19020 11 2 Syncon 600 61 6
Nursery 12960 9 5 Chess 551 40 2
Sign 12546 9 3 Cylinder 540 40 2
PenDigits 10992 17 10 Muskl1 476 167 2
Thyroid 9169 30 20 HouseVotes84 435 17 2
Mushrooms 8124 23 2 HorseColic 368 22 2
Musk2 6598 167 2 Dermatology 366 35 6
Satellite 6435 37 6 lonosphere 351 35 2
OpticalDigits 5620 49 10 LiverDisorders(Bupa) 345 7 2
PageBlocksClassification 5473 11 5 Primary Tumor 339 18 22
Wall-following 5456 25 4 Haberman’sSurvival 300 4 2
Nettalk(Phoneme) 5438 8 52 HeartDisease(Cleveland) 303 14 2

and lots more datasets ... (not shown in the figure)
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UCI Datasets Preprocessing

» Convert into ARFF format and process on WEKA.
> Apply the MDL discretization method of Fayyad and lrani.

» Also did one experiment with the very large Splice dataset.
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Experimental Setup

» Use 5 runs of 2-fold cross validation.
» known to be more stable than 10-fold cross validation
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Experimental Setup

» Use 5 runs of 2-fold cross validation.
» known to be more stable than 10-fold cross validation
» Evaluate with RMSE and 0-1 loss.

» in classification context, MSE is related to the Brier score and
is a proper scoring function, so evaluates the probabilities

» Test the KDB versions and SKDB (max k=5) for HDP versus
m-estimation with a back-off (for zero counts).

> with m-estimation, we estimate m from {0,0.05,0.2,1,5,20}
using cross validation on non-test subset

> Also test against Random Forest with 100 trees.

» Did one experiment with the very large Splice dataset.

26 /35



Qutline

discovery
information retrieval

multinomial

semantics

topic model
latent

independent component analysis
correlations variable

Dirichlet -
IlOl’ll]Cg‘dll\C matrix factorization
. variational ¢
Gibbs sampling
statisticalachine learning
SIBayesiantext
natural language
unsupervised

clustering likelihood ReS u | ts

estimation

27/35



Main Claim

» Hierarchical smoothing
» applied to Bayesian network classifiers
» on categorical datasets
» beats Random Forest
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KDBs for HDP versus m-estimation

Classifier Win—draw-loss for HDP vs m-estimate

0/1-loss RMSE

Naive Bayes HDP wins
TAN

kDB-1
kDB-2
kDB-3
kDB-4
kDB-5

SkDB

* bold W-D-L values are significant at 5% by two-tailed binomial sign test
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RMSE for KDB-5 for HDP versus

m-estimation

0.6

0.5

0.4+
[«
0 0.3+
I

0.2

0.1

Here m-estimate wins

’é_,Cylmder—Bands data

Here HDP wins

0.1 0.2 0.3 0.4 0.5 0.6
m-estimates
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Comparison of TAN, SKDB and RF100

Compared classifiers ~ Win—-draw—loss

0/1-loss RMSE

wins! SkDB-m vs RF 27-3-38  29-1-38

RF usually 5 TAN-HDP vs RF 42-3-23  42-0-26
loses! SKkDB-HDP vs RF 35-3-30 44-0-24

RF usuany{TAN—m vs RF 26-3-39 25-0-43

* bold W-D-L values are significant at 5% by two-tailed binomial sign test
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0-1 Loss for SKDB-HDP versus

RF100

0.7

0.6

0.5

0.4

0.34

0.24

0.1

RF100

0-1 loss

Here SKDB wins

T T T T T T
0.1 0.2 03 0.4 05 0.6
SKDBwith HDP

0.7
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SKDB versus Gradient Boosting

>
>
>
>
>

Splice data: 50 million plus training data

imbalanced: 1% positive class

RF could not run with WEKA (out of memory)

using XGBoost v0.6, 1 hour computation
SKDB-HDP, 4 hour computation

Classifier 0/1-loss RMSE
SkDB5-m 1.499%  0.1093
SkDB5-HDP 0.318%  0.0544
XGBoost 0.314% 0.0594
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Software for HDP Hierarchical Smoothing

git clone https://github.com/fpetitjean/HDP #download
cd HDP

ant #compile

java -jar jar/HDP.jar #run example

Example with your data

String [][ldata = { // (stroke,weight,height)
{"yes", "heavy","tall"},

{"yes", "heavy","med"} };
ProbabilityTree hdp = new ProbabilityTree(); // init.
hdp.addDataset (data); //learn HDP tree - p(strokelweight,height)
hdp.query("heavy","short"); //returns [61], 39/]
hdp.query("heavy","tall"); //returns [317, 697]
hdp.query("light","tall"); //returns [97, 91/]
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Conclusion

1. Hierarchical smoothing using HDP theory and algorithm
presented.

» HDP smoothing code on Github in Java
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Conclusion

1. Hierarchical smoothing using HDP theory and algorithm
presented.

» HDP smoothing code on Github in Java

2. Combined HDP smoother with SKDB learner for BNCs to
produce fast(-ish), scalable classification algorithm
beating RFs.

3. He ‘Penny’ Zhang (Monash PhD student) has significant
improvements to the method.

» sped up algorithm and beating Gradient Boosting of trees

34/35
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