
Accurate parameter estimation for
Bayesian network classifiers

using hierarchical Dirichlet
processes

François Petitjean, Wray Buntine,
Geoff Webb and Nayyar Zaidi

Monash University

2018-09-13

1 / 35

Outline

Motivation

Bayesian Network Classifiers

Hierarchical Smoothing

Experimental Setup

Results

Conclusion
2 / 35

A Cultural Divide

Context: When discussing teaching Data Science with a well
known professor of Statistics.

She said: “when first teaching overfitting, I always give some
examples where machine learning has trouble, like
decision trees”

I said: “funny, I do the reverse, I always give examples
where statistical models have trouble”

ASIDE: our hierarchical smoothing also gives state of the art
results for decision tree smoothing

2 / 35

A Cultural Divide

Context: When discussing teaching Data Science with a well
known professor of Statistics.

She said: “when first teaching overfitting, I always give some
examples where machine learning has trouble, like
decision trees”

I said: “funny, I do the reverse, I always give examples
where statistical models have trouble”

ASIDE: our hierarchical smoothing also gives state of the art
results for decision tree smoothing

2 / 35

State of the Art in Classification

Favoured techniques for standard classification are
Random Forest and Gradient Boosting (of trees).

NB. for sequences, images or graphs, deep neural networks (recurrent
NN, convolutional NN, etc.) are better

3 / 35

State of the Art in Classification

Favoured techniques for standard classification are
Random Forest and Gradient Boosting (of trees).

NB. for sequences, images or graphs, deep neural networks (recurrent
NN, convolutional NN, etc.) are better

3 / 35

Main Claim

Main Claim: Hierarchical smoothing applied to Bayesian
network classifiers on categorical data beats Random Forest

I a single model beats state of the art ensemble
I is also comparable with XGBoost1

I but only on categorical data
I though also for a lot of other data too1

1not well shown in the paper ...
4 / 35

Main Claim

Main Claim: Hierarchical smoothing applied to Bayesian
network classifiers on categorical data beats Random Forest

I a single model beats state of the art ensemble
I is also comparable with XGBoost1

I but only on categorical data
I though also for a lot of other data too1

1not well shown in the paper ...
4 / 35

Unpacking the Main Claim

I Hierarchical smoothing
I using hierarchical Dirichlet models

I applied to Bayesian network classifiers
I the KDB and SKDB family

I on categorical datasets
I or pre-discretised attributes

I beats Random Forest

5 / 35

Outline

Motivation

Bayesian Network Classifiers

Hierarchical Smoothing

Experimental Setup

Results

Conclusion
6 / 35

Reminder: Main Claim

I Hierarchical smoothing
I applied to Bayesian network classifiers

I the KDB and SKDB family

I on categorical datasets

I beats Random Forest

6 / 35

Learning Bayesian Networks
tutorial by Cussens, Malone and Yuan, IJCAI 2013

Bayesian Networks learning =

Structure learning + Conditional Probability Table estimation
7 / 35

Bayesian Network Classifiers
Friedman, Geiger, Goldszmidt, Machine Learning 1997

I Defined by parent relation π and Conditional Probability
Tables (CPTs)
I π encodes conditional independence / structure
I πi is the parent variables for Xi

I CPTs encode conditional probabilities

I For classification, make class variable Y a parent of all Xi

I Classifies using P(y | x) ∝ P(y | πY)
∏

P(xi | πi)

Näıve Bayes classifier:
πi = {Y }

X2 X4 X1 X3

Y

Decreasing mutual information with Y

8 / 35

Bayesian Network Classifiers
Friedman, Geiger, Goldszmidt, Machine Learning 1997

I Defined by parent relation π and Conditional Probability
Tables (CPTs)
I π encodes conditional independence / structure
I πi is the parent variables for Xi

I CPTs encode conditional probabilities

I For classification, make class variable Y a parent of all Xi

I Classifies using P(y | x) ∝ P(y | πY)
∏

P(xi | πi)

Näıve Bayes classifier:
πi = {Y }

X2 X4 X1 X3

Y

Decreasing mutual information with Y

8 / 35

Bayesian Network Classifiers
Friedman, Geiger, Goldszmidt, Machine Learning 1997

I Defined by parent relation π and Conditional Probability
Tables (CPTs)
I π encodes conditional independence / structure
I πi is the parent variables for Xi

I CPTs encode conditional probabilities

I For classification, make class variable Y a parent of all Xi

I Classifies using P(y | x) ∝ P(y | πY)
∏

P(xi | πi)

Näıve Bayes classifier:
πi = {Y }

X2 X4 X1 X3

Y

Decreasing mutual information with Y

8 / 35

k-Dependence Bayes (KDB)
Sahami, KDD 1996

KDB-1 classifier:
(attributes have 1 extra parent) X2 X4 X1 X3

Y

Decreasing mutual information with Y

KDB-2 classifier:
(attributes have 2 extra parents)

X2 X4 X1 X3

Y

NB. other parents also selected by mutual information

9 / 35

Learning k-Dependence Bayes (KDB)

I Two pass learning
I 1st pass, learn structure π:

I Uses variable ordering heuristics based on mutual information,
so efficient and scalable.

I 2nd pass, learn CPTs:
I Collect statistics according to the structure learned.
I Form CPTs using Laplace smoothers, or m-estimation.
I With simple CPTs is exponential family so inherently scalable.

10 / 35

Learning k-Dependence Bayes (KDB)

I Two pass learning
I 1st pass, learn structure π:

I Uses variable ordering heuristics based on mutual information,
so efficient and scalable.

I 2nd pass, learn CPTs:
I Collect statistics according to the structure learned.
I Form CPTs using Laplace smoothers, or m-estimation.
I With simple CPTs is exponential family so inherently scalable.

10 / 35

Selective k-Dependence Bayes (SKDB)
Martnez, Webb, Chen and Zaidi, JMLR 2016

But, how do we pick k in KDB, and how do we select which
attributes to use?

I Use Leave-one-out cross validation (LOOCV) on MSE to
select both k and which attributes to use.

I Requires a third pass through the data to compute LOOCV
MSE estimates of probability and minimise.

I As efficient as previous passes.

I Called SKDB.

11 / 35

Selective k-Dependence Bayes (SKDB)
Martnez, Webb, Chen and Zaidi, JMLR 2016

But, how do we pick k in KDB, and how do we select which
attributes to use?

I Use Leave-one-out cross validation (LOOCV) on MSE to
select both k and which attributes to use.

I Requires a third pass through the data to compute LOOCV
MSE estimates of probability and minimise.

I As efficient as previous passes.

I Called SKDB.

11 / 35

Learning Curves: Typical Comparison

12 / 35

Outline

Motivation

Bayesian Network Classifiers

Hierarchical Smoothing

Experimental Setup

Results

Conclusion
13 / 35

Reminder: Main Claim

I Hierarchical smoothing
I using hierarchical Dirichlet models

I applied to Bayesian network classifiers

I on categorical datasets

I beats Random Forest

13 / 35

Why doing Hierarchical Smoothing?

I You want to predict disease as a function of some rare gene G
and sex, knowing that this disease is more prevalent for
females

#patients with disease
#patients without disease100–901

10–1 90–900

10–0 0–1

has gene doesn’t have gene

female male

14 / 35

Why doing Hierarchical Smoothing?

I You want to predict disease as a function of some rare gene G
and sex, knowing that this disease is more prevalent for
females

#patients with disease
#patients without disease100–901

10–1 90–900

10–0 0–1

has gene doesn’t have gene

female male

p(disease|has-gene & male)?

14 / 35

Why doing Hierarchical Smoothing?

I You want to predict disease as a function of some rare gene G
and sex, knowing that this disease is more prevalent for
females

#patients with disease
#patients without disease100–901

10–1 90–900

10–0 0–1

has gene doesn’t have gene

female male

pMLE = 0%

14 / 35

Why doing Hierarchical Smoothing?

I You want to predict disease as a function of some rare gene G
and sex, knowing that this disease is more prevalent for
females

#patients with disease
#patients without disease100–901

10–1 90–900

10–0 0–1

has gene doesn’t have gene

female male

pLaplace = 33%

14 / 35

Why doing Hierarchical Smoothing?

I You want to predict disease as a function of some rare gene G
and sex, knowing that this disease is more prevalent for
females

#patients with disease
#patients without disease100–901

10–1 90–900

10–0 0–1

has gene doesn’t have gene

female male

pm-estimate = 25%

14 / 35

Why doing Hierarchical Smoothing?

I You want to predict disease as a function of some rare gene G
and sex, knowing that this disease is more prevalent for
females

#patients with disease
#patients without disease100–901

10–1 90–900

10–0 0–1

has gene doesn’t have gene

female male

pm-estimate = 25%

None of them use the fact that 91% of the patients
with that gene have the disease! 14 / 35

Why doing Hierarchical Smoothing?

I You want to predict disease as a function of some rare gene G
and sex, knowing that this disease is more prevalent for
females

#patients with disease
#patients without disease100–901

10–1 90–900

10–0 0–1

has gene doesn’t have gene

female male

pm-estimate = 25%

None of them use the fact that 91% of the patients
with that gene have the disease! 14 / 35

The idea of hierarchical smoothing/estimation is to make
each node a function of the data at the node and the
estimate at the parent.

p(disease|has gene & male) ∼ p(disease|has gene)

p(disease|has gene) ∼ p(disease)

Hierarchical Smoothing

Hierarchical Smoothing: When smoothing parameters in
the context of a tree, use parent or ancestor parameters
estimates in the smoothing.

15 / 35

Hierarchical Smoothing

I You add prior parameters φ representing prior probability
vectors for all ancestor nodes.

φdisease

φdisease|has-gene φdisease|¬has-gene

θdisease|has-gene,female θdisease|has-gene,male

has gene doesn’t have gene

female male

16 / 35

Hierarchical Smoothing

I You add prior parameters φ representing prior probability
vectors for all ancestor nodes.

φdisease

φdisease|has-gene φdisease|¬has-gene

θdisease|has-gene,female θdisease|has-gene,male

has gene doesn’t have gene

female male

16 / 35

the leaf variables θ are models parameters for the leaf probabilities

I our task is to estimate these

Hierarchical Smoothing

I You add prior parameters φ representing prior probability
vectors for all ancestor nodes.

φdisease

φdisease|has-gene φdisease|¬has-gene

θdisease|has-gene,female θdisease|has-gene,male

has gene doesn’t have gene

female male

16 / 35

the ancestor variables φ are prior parameters used in estimating the
leaf probabilities

I these are beliefs not frequencies

I they do not correspond to frequencies at the ancestor nodes

Hierarchical Smoothing Model

Use Dirichlet distributions hierarchically.

I use Dir (θ, α) to represent a Dirichlet with parameter αθ

I normalised probability vector θ

I concentration (inverse variance) α

Use the pattern:

θ(node) | φ(node) ∼ Dir (φ(parent), α(node))

17 / 35

Hierarchical Smoothing Model

Use Dirichlet distributions hierarchically.

I use Dir (θ, α) to represent a Dirichlet with parameter αθ

I normalised probability vector θ

I concentration (inverse variance) α

Use the pattern:

θ(node) | φ(node) ∼ Dir (φ(parent), α(node))

17 / 35

Hierarchical Smoothing Model, cont.

Leaf probabilities:

θXc |y ,x1,··· ,xn ∼ Dir
(
φXc |y ,x1,··· ,xn−1

, αy ,x1,··· ,xn
)

Prior probabilities:

φXc ∼ Dir

(
1

|Xc |
~1, α0

)
φXc |y ∼ Dir (φXc , αy)

...
φXc |y ,x1,··· ,xn−1

∼ Dir
(
φXc |y ,x1,··· ,xn−2

, αy ,x1,··· ,xn−1

)

18 / 35

Hierarchical Smoothing Model, cont.

Leaf probabilities:

θXc |y ,x1,··· ,xn ∼ Dir
(
φXc |y ,x1,··· ,xn−1

, αy ,x1,··· ,xn
)

Prior probabilities:

φXc ∼ Dir

(
1

|Xc |
~1, α0

)
φXc |y ∼ Dir (φXc , αy)

...
φXc |y ,x1,··· ,xn−1

∼ Dir
(
φXc |y ,x1,··· ,xn−2

, αy ,x1,··· ,xn−1

)

18 / 35

Smoothing Formula
Smoothed probability estimates work back down the tree from the
root using the pattern:

p(node) ∝ count(node) + p(parent)×α(node)

Yielding:

φ̂xc =
nxc + 1

|Xc |α0

n· + α0

φ̂xc |y ,x1,··· ,xi =
nxc |y ,x1,··· ,xi + φ̂xc |y ,x1,··· ,xi−1

αy ,x1,··· ,xi
n·|y ,x1,··· ,xi + αy ,x1,··· ,xi

θ̂xc |y ,x1,··· ,xn =
nxc |y ,x1,··· ,xn + φ̂xc |y ,x1,··· ,xn−1

αy ,x1,··· ,xn
n·|y ,x1,··· ,xn + αy ,x1,··· ,xn

But how do we get the estimates φ̂xc |y ,x1,··· ,xi ?

19 / 35

Smoothing Formula
Smoothed probability estimates work back down the tree from the
root using the pattern:

p(node) ∝ count(node) + p(parent)×α(node)

Yielding:

φ̂xc =
nxc + 1

|Xc |α0

n· + α0

φ̂xc |y ,x1,··· ,xi =
nxc |y ,x1,··· ,xi + φ̂xc |y ,x1,··· ,xi−1

αy ,x1,··· ,xi
n·|y ,x1,··· ,xi + αy ,x1,··· ,xi

θ̂xc |y ,x1,··· ,xn =
nxc |y ,x1,··· ,xn + φ̂xc |y ,x1,··· ,xn−1

αy ,x1,··· ,xn
n·|y ,x1,··· ,xn + αy ,x1,··· ,xn

But how do we get the estimates φ̂xc |y ,x1,··· ,xi ?

19 / 35

Smoothing Formula
Smoothed probability estimates work back down the tree from the
root using the pattern:

p(node) ∝ count(node) + p(parent)×α(node)

Yielding:

φ̂xc =
nxc + 1

|Xc |α0

n· + α0

φ̂xc |y ,x1,··· ,xi =
nxc |y ,x1,··· ,xi + φ̂xc |y ,x1,··· ,xi−1

αy ,x1,··· ,xi
n·|y ,x1,··· ,xi + αy ,x1,··· ,xi

θ̂xc |y ,x1,··· ,xn =
nxc |y ,x1,··· ,xn + φ̂xc |y ,x1,··· ,xn−1

αy ,x1,··· ,xn
n·|y ,x1,··· ,xn + αy ,x1,··· ,xn

But how do we get the estimates φ̂xc |y ,x1,··· ,xi ?

19 / 35

Hierarchical Dirichlet

The Dirichlet distribution corresponds
to a Dirichlet process with a discrete
base distribution.

We use a hierarchical Dirichlet processes (HDP) to
handle the hierarchical Dirichlet distributions.

20 / 35

Hierarchical Dirichlet

The Dirichlet distribution corresponds
to a Dirichlet process with a discrete
base distribution.

We use a hierarchical Dirichlet processes (HDP) to
handle the hierarchical Dirichlet distributions.

20 / 35

Historical Context for HDP

1990s-2003: Pitman and Ishwaran and James in mathematical
statistics develop theory.

2006: Teh, Jordan, Beal and Blei develop HDP, e.g. applied
to LDA.

2006-2011: Chinese restaurant processes (CRPs) go wild!

I require dynamic memory in implementation,
e.g. Chinese restaurant franchise, stick-breaking, etc.

But: very slow, require large amounts of dynamic
memory.

popularity of HDPs has decreased!

21 / 35

Historical Context for HDP

1990s-2003: Pitman and Ishwaran and James in mathematical
statistics develop theory.

2006: Teh, Jordan, Beal and Blei develop HDP, e.g. applied
to LDA.

2006-2011: Chinese restaurant processes (CRPs) go wild!

I require dynamic memory in implementation,
e.g. Chinese restaurant franchise, stick-breaking, etc.

But: very slow, require large amounts of dynamic
memory.

popularity of HDPs has decreased!

21 / 35

Historical Context for HDP, cont.

2011: Chen, Du, Buntine show slow methods not needed by
introducing collapsed samplers.

2011: Buntine (unpublished) develops high performance
algorithm for HDP and n-grams.

2014: Buntine and Mishra develop high performance
algorithm for HDP and topic models.

I We use high performance techniques for the hierarchical
Dirichlet process (HDP) to do inference.
I outperforms Stochastic Variational Inference on some tasks

I This uses a (fairly) efficient Gibbs sampler.
I no dynamic memory
I with variable augmentation and caching

I Details in the paper.

22 / 35

Historical Context for HDP, cont.

2011: Chen, Du, Buntine show slow methods not needed by
introducing collapsed samplers.

2011: Buntine (unpublished) develops high performance
algorithm for HDP and n-grams.

2014: Buntine and Mishra develop high performance
algorithm for HDP and topic models.

I We use high performance techniques for the hierarchical
Dirichlet process (HDP) to do inference.
I outperforms Stochastic Variational Inference on some tasks

I This uses a (fairly) efficient Gibbs sampler.
I no dynamic memory
I with variable augmentation and caching

I Details in the paper.

22 / 35

Outline

Motivation

Bayesian Network Classifiers

Hierarchical Smoothing

Experimental Setup

Results

Conclusion
23 / 35

Main Claim

I Hierarchical smoothing

I applied to Bayesian network classifiers
I on categorical datasets

I or pre-discretised attributes

I beats Random Forest

23 / 35

UCI Datasets

and lots more datasets ... (not shown in the figure)

24 / 35

UCI Datasets Preprocessing

I Convert into ARFF format and process on WEKA.

I Apply the MDL discretization method of Fayyad and Irani.

I Also did one experiment with the very large Splice dataset.

25 / 35

Experimental Setup

I Use 5 runs of 2-fold cross validation.
I known to be more stable than 10-fold cross validation

I Evaluate with RMSE and 0-1 loss.
I in classification context, MSE is related to the Brier score and

is a proper scoring function, so evaluates the probabilities

I Test the KDB versions and SKDB (max k=5) for HDP versus
m-estimation with a back-off (for zero counts).
I with m-estimation, we estimate m from {0, 0.05, 0.2, 1, 5, 20}

using cross validation on non-test subset

I Also test against Random Forest with 100 trees.

I Did one experiment with the very large Splice dataset.

26 / 35

Experimental Setup

I Use 5 runs of 2-fold cross validation.
I known to be more stable than 10-fold cross validation

I Evaluate with RMSE and 0-1 loss.
I in classification context, MSE is related to the Brier score and

is a proper scoring function, so evaluates the probabilities

I Test the KDB versions and SKDB (max k=5) for HDP versus
m-estimation with a back-off (for zero counts).
I with m-estimation, we estimate m from {0, 0.05, 0.2, 1, 5, 20}

using cross validation on non-test subset

I Also test against Random Forest with 100 trees.

I Did one experiment with the very large Splice dataset.

26 / 35

Experimental Setup

I Use 5 runs of 2-fold cross validation.
I known to be more stable than 10-fold cross validation

I Evaluate with RMSE and 0-1 loss.
I in classification context, MSE is related to the Brier score and

is a proper scoring function, so evaluates the probabilities

I Test the KDB versions and SKDB (max k=5) for HDP versus
m-estimation with a back-off (for zero counts).
I with m-estimation, we estimate m from {0, 0.05, 0.2, 1, 5, 20}

using cross validation on non-test subset

I Also test against Random Forest with 100 trees.

I Did one experiment with the very large Splice dataset.

26 / 35

Experimental Setup

I Use 5 runs of 2-fold cross validation.
I known to be more stable than 10-fold cross validation

I Evaluate with RMSE and 0-1 loss.
I in classification context, MSE is related to the Brier score and

is a proper scoring function, so evaluates the probabilities

I Test the KDB versions and SKDB (max k=5) for HDP versus
m-estimation with a back-off (for zero counts).
I with m-estimation, we estimate m from {0, 0.05, 0.2, 1, 5, 20}

using cross validation on non-test subset

I Also test against Random Forest with 100 trees.

I Did one experiment with the very large Splice dataset.

26 / 35

Experimental Setup

I Use 5 runs of 2-fold cross validation.
I known to be more stable than 10-fold cross validation

I Evaluate with RMSE and 0-1 loss.
I in classification context, MSE is related to the Brier score and

is a proper scoring function, so evaluates the probabilities

I Test the KDB versions and SKDB (max k=5) for HDP versus
m-estimation with a back-off (for zero counts).
I with m-estimation, we estimate m from {0, 0.05, 0.2, 1, 5, 20}

using cross validation on non-test subset

I Also test against Random Forest with 100 trees.

I Did one experiment with the very large Splice dataset.

26 / 35

Outline

Motivation

Bayesian Network Classifiers

Hierarchical Smoothing

Experimental Setup

Results

Conclusion
27 / 35

Main Claim

I Hierarchical smoothing

I applied to Bayesian network classifiers

I on categorical datasets

I beats Random Forest

27 / 35

KDBs for HDP versus m-estimation

∗ bold W-D-L values are significant at 5% by two-tailed binomial sign test

28 / 35

RMSE for KDB-5 for HDP versus
m-estimation

29 / 35

Comparison of TAN, SKDB and RF100

∗ bold W-D-L values are significant at 5% by two-tailed binomial sign test

30 / 35

0-1 Loss for SKDB-HDP versus RF100

31 / 35

SKDB versus Gradient Boosting

I Splice data: 50 million plus training data

I imbalanced: 1% positive class

I RF could not run with WEKA (out of memory)

I using XGBoost v0.6, 1 hour computation

I SKDB-HDP, 4 hour computation

32 / 35

Outline

Motivation

Bayesian Network Classifiers

Hierarchical Smoothing

Experimental Setup

Results

Conclusion
33 / 35

Software for HDP Hierarchical Smoothing
Download, compile and run

git clone https://github.com/fpetitjean/HDP #download

cd HDP

ant #compile

java -jar jar/HDP.jar #run example

Example with your data

String [][]data = { // (stroke,weight,height)

{"yes","heavy","tall"},

...

{"yes","heavy","med"} };

ProbabilityTree hdp = new ProbabilityTree(); // init.

hdp.addDataset(data); //learn HDP tree - p(stroke|weight,height)

hdp.query("heavy","short"); //returns [61%, 39%]

hdp.query("heavy","tall"); //returns [31%, 69%]

hdp.query("light","tall"); //returns [9%, 91%]

33 / 35

Conclusion

1. Hierarchical smoothing using HDP theory and algorithm
presented.
I HDP smoothing code on Github in Java

2. Combined HDP smoother with SKDB learner for BNCs to
produce fast(-ish), scalable classification algorithm
beating RFs.

3. He ‘Penny’ Zhang (Monash PhD student) has significant
improvements to the method.
I sped up algorithm and beating Gradient Boosting of trees

34 / 35

Conclusion

1. Hierarchical smoothing using HDP theory and algorithm
presented.
I HDP smoothing code on Github in Java

2. Combined HDP smoother with SKDB learner for BNCs to
produce fast(-ish), scalable classification algorithm
beating RFs.

3. He ‘Penny’ Zhang (Monash PhD student) has significant
improvements to the method.
I sped up algorithm and beating Gradient Boosting of trees

34 / 35

Conclusion

1. Hierarchical smoothing using HDP theory and algorithm
presented.
I HDP smoothing code on Github in Java

2. Combined HDP smoother with SKDB learner for BNCs to
produce fast(-ish), scalable classification algorithm
beating RFs.

3. He ‘Penny’ Zhang (Monash PhD student) has significant
improvements to the method.
I sped up algorithm and beating Gradient Boosting of trees

34 / 35

Questions?

35 / 35

	Motivation
	Bayesian Network Classifiers
	Hierarchical Smoothing
	Experimental Setup
	Results
	Conclusion

