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ABSTRACT
Statistical hypothesis testing is a popular and powerful tool
for inferring knowledge from data. For every such test per-
formed, there is always a non-zero probability of making a
false discovery, i.e. rejecting a null hypothesis in error. Fam-
ilywise error rate (FWER) is the probability of making at
least one false discovery during an inference process. The
expected FWER grows exponentially with the number of
hypothesis tests that are performed, almost guaranteeing
that an error will be committed if the number of tests is big
enough and the risk is not managed; a problem known as
the multiple testing problem. State-of-the-art methods for
controlling FWER in multiple comparison settings require
that the set of hypotheses be pre-determined. This greatly
hinders statistical testing for many modern applications of
statistical inference, such as model selection, because nei-
ther the set of hypotheses that will be tested, nor even the
number of hypotheses, can be known in advance.
This paper introduces Subfamilywise Multiple Testing, a

multiple-testing correction that can be used in applications
for which there are repeated pools of null hypotheses from
each of which a single null hypothesis is to be rejected and
neither the specific hypotheses nor their number are known
until the final rejection decision is completed.
To demonstrate the importance and relevance of this work

to current machine learning problems, we further refine the
theory to the problem of model selection and show how to
use Subfamilywise Multiple Testing for learning graphical
models.
We assess its ability to discover graphical models on more

than 7,000 datasets, studying the ability of Subfamilywise
Multiple Testing to outperform the state of the art on data
with varying size and dimensionality, as well as with vary-
ing density and power of the present correlations. Subfam-
ilywise Multiple Testing provides a significant improvement
in statistical efficiency, often requiring only half as much
data to discover the same model, while strictly controlling
FWER.
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Figure 1: Evolution of the FWER as a function of
the number of tested true null hypotheses if no mul-
tiple testing correction procedure is used with sig-
nificance level α = 0.05.
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1. INTRODUCTION
Statistical hypothesis testing was developed in a context

of assessing a single proposition with respect to some data
while strictly controlling the risk of type 1 error – the risk of
rejecting the null hypothesis, and thus incorrectly accepting
the hypothesis of interest. This is an extremely powerful ap-
proach to knowledge discovery from data. However, in the
digital age, where data are almost omnipresent, it is often
desirable to employ this approach to test not just a single
proposition but massive numbers of propositions. In this
case it is not sufficient to simply control in isolation the risk
of type one error for each null hypothesis, as even if the in-
dividual risk is low, the cumulative risk rapidly approaches
near certainty; as shown in Figure 1 which plots the evolu-
tion of the FWER as the number of independent true null
hypotheses tested m increases. This has led to multiple
testing procedures, that can directly control the Familywise
Error Rate (FWER), the cumulative risk of any type 1 error
when testing a set of null hypotheses [2, 3, 9, 14].
However, these powerful techniques are restricted in that

the set of null hypotheses (or at least an upper bound on
their number) must be known in advance. This limits their
applicability in a growing range of applications where there
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is a need to test some hypotheses before other hypotheses
are known (hypothesis streams) and the special case of these
streams where the rejection of one hypothesis changes the
null hypotheses to be tested subsequently (hypotheses cas-
cades).
One context in which hypothesis streams are encountered

is online controlled experiments, where many tests are con-
ducted in parallel, with new tests commencing while others
are still in progress [19].
Hypothesis streams and cascades also confront scien-

tific research [34]. Scientists increasingly accumulate large
datasets at great expense, and it is imperative that these be
used to maximum advantage. As a result, it is important to
be able to undertake statistical testing of initial hypotheses,
and then follow these up with further tests that arise from
the initial discoveries.
A further complication is that many datasets are continu-

ally growing. It is not possible to wait until all astronomical
data are collected, for example, because new observations
are made all the time. Nonetheless, we want to be able to
derive conclusions from the data. We also want to be able
to reconsider hypotheses in the light of additional data as it
becomes available. Further, conclusions that we reach with
respect to initial hypotheses are likely to lead to the formu-
lation of further hypotheses that we also want to test. If we
just keep testing null hypotheses without controlling for the
multiple testing problem, then eventually some will be re-
jected by chance. There is a pressing need for statistical
methods that can support science in the age of big data.
Hypothesis streams and cascades are also serious chal-

lenges in many data science contexts, including forward step-
wise feature selection [8], backward stepwise feature elimi-
nation [8], association discovery [38, 39] and model selection
[27]. We use this latter application as a case study.
Let us motivate why hypotheses cascades can occur in

model selection. Graphical model forward selection tradi-
tionally starts with a reference model over n nodes (one
node per variable) with no edges. At step s of the process,
the reference model contains s edges, and the addition of
one edge among es has to be considered.1 The number of
possible steps is equal to the maximum number of edges
M = n · (n− 1)/2, and at each step s, there are M − s+ 1
edges to consider. In consequence, the greatest number of
models that we may need to test is M · (M + 1)/2, which
means that discovering a model with n = 1, 000 leads to the
possibility of more than 100 billion tests to be performed,
and thus to control against.
This highlights several key motivations of this work:
1. With more than 100 billion tests, even using a recom-

mended flat critical value α = 0.001 [17], this is po-
tentially 100 million hypotheses that could correspond
to false discoveries. Therefore, controlling for multiple
testing is critical.

2. It would be more natural to consider the set of hy-
potheses as a stream than as a complete set, because
many of the hypotheses might never be considered.
We are in fact very likely to stop at step sk, k � M ,
which means that controlling for all the hypotheses

1It is important to note that the addition of edge (a, b) at
step s and at step s′ are two separate hypotheses, because
the reference models to which (a, b) would be added is dif-
ferent; we will detail this element in Section 4.

that might have been present after step sk is need-
lessly strict and as we will show, often prevents the
acceptance of many true discoveries. We only want to
control for the risk with respect to hypotheses that are
actually assessed.
In consequence, the multiple testing procedure should
be able to consider new hypotheses to be tested that
were not present at the start of the process, without
having any knowledge about the hypotheses and their
number in advance.

This paper introduces Subfamilywise Multiple Testing
(SMT): a multiple testing correction procedure that strictly
controls FWER in settings where we have no prior knowl-
edge about the set of hypotheses that will be tested or of
their number.

2. SUBFAMILYWISE TESTING

2.1 Problem statement
Let F =

⋃n

i=1 Fi be a family of n subfamilies of null
hypotheses. For any null hypothesis h ∈ F , let κh be an
associated test statistic and ph = Px(κh | istrue(h)) be the
probability of obtaining the test statistic κh or more extreme
if h were true, where Px(κh | istrue(h)) represents the prob-
ability of obtaining the test statistic or more extreme under
some predetermined probability distribution for h. Classical
hypothesis testing rejects each null hypothesis h if ph ≤ α,
where α is a predefined critical value.
The probability of making a false discovery when testing

a unique null hypothesis h (i.e., the probability of rejecting
h when it is true) is no greater than Pr(h)ph, the prior
probability that the null hypothesis is true times the p-value
ph. Thus, ph is an upper bound on the probability of a false
discovery when a single hypothesis is tested.

Definition 1. The familywise error rate (FWER), is the
probability of making at least one false discovery — or Type
I error — when testing family F . Let R ⊆ F be the rejected
null hypotheses and T ⊆ F be the true null hypotheses. We
have

FWER = Pr(R∩ T 6= ∅) = 1− Pr(R∩ T = ∅). (1)

A multiple testing correction procedure provides strict
control over the FWER if it is a function from families of null
hypotheses (together with their associated test statistics)
and a critical value to a subset of the family, F , α→R ⊆ F
such that no matter which subset of the null hypotheses is
true, the probability of rejecting any true null hypothesis is
less than α —

Pr(R∩T 6= ∅) ≤ α. (2)

We wish to control FWER while iterating over the sub-
families of F , selecting a single null hypothesis for rejec-
tion from each subfamily. When considering subfamily Fi

we have knowledge of the subfamilies previously considered,
but no information about subsequent subfamilies to be en-
countered. We allow that the selection of the null hypothesis
for rejection in Fi might determine the null hypotheses that
are contained in subsequent subfamilies, as is the case with
forward sequential model selection, where the components
considered for subsequent inclusion in a model may depend
on the components already included.



2.2 SMT Procedure

Theorem 1. Let hmin
i be the null hypotheses in Fi with

the lowest p-value, hmin
i = arg minh∈Fi

(ph). Let R con-
tain the null hypothesis with the lowest p-value from each of
the first r subfamilies, R = {hmin

1 , . . . , hmin
r }. Let pmin

i =
phmin

i
= minh∈Fi (ph) be the minimum p-value of a null hy-

potheses in Fi.

Pr(R∩ T 6= ∅) ≤
r∑

i=1

pmin
i · |Fi|. (3)

Proof.

Pr(R∩ T 6= ∅) = Pr

(
r∨

i=1

∨
h∈Fi∩T

ph ≤ pmin
i

)
(4)

≤
r∑

i=1

∑
h∈Fi∩T

Pr(ph ≤ pmin
i ) (5)

≤
r∑

i=1

∑
h∈Fi∩T

pmin
i (6)

≤
r∑

i=1

∑
h∈Fi

pmin
i (7)

=
r∑

i=1

pmin
i · |Fi|. (8)

Comments. (4) recasts the probability of FWER as the
probability of any p-value being less than or equal to pmin

i for
any true null hypothesis in any subfamily Fi from which a
null hypothesis is rejected. (5) follows from the consequence
of the general disjunction rule that the probability of a dis-
junction of events cannot exceed the sum of the probabilities
of the individual events. For any true null hypothesis h, the
probability that the p-value from a valid test procedure is
less than or equal to a given p is no greater than p. This
justifies (6). The sum over a set of probabilities can be no
less than the sum over a superset of those values, justifying
(7). (8) re-expresses the equation in terms of |Fi|.
The Subfamilywise Multiple Testing Procedure (SMT)

provides strict control over the FWER in a multiple testing
situation where there are successive pools of null hypotheses
from each of which a single null hypothesis is to be rejected.
The procedure has two steps. Step 1 finds

r? = arg max
r

(
r∑

i=1

pmin
i · |Fi| ≤ α). (9)

Step 2 rejects hmin
1 , . . . , hmin

r? . That this procedure strictly
controls FWER to be no greater than α follows directly from
Theorem 1.

3. MONTE CARLO SIMULATIONS
To elucidate the statistical power of the technique, we con-

ducted Monte Carlo simulations, generating sets of null hy-
potheses, which were randomly assigned to be either true or
false and were randomly assigned simulated p-values. These
simulations were governed by three parameters — subfam-
ilySize: the size of each subfamily; pTrue: the probability

1.000

0.100

0.010

0.0010

0.01

0.02

0.03

0.04

0.05

0.06

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

m
ax
Fa
ls
eP

V
al
u
e

FW
ER

pTrue

Figure 2: The FWER of SMT as the relative fre-
quency of true to false null hypotheses is increased
and the relative p-values of false relative to true null
hypotheses is decreased

that a null hypothesis should be designated to be true; and
maxFalsePVal: the maximum simulated p-value to be as-
signed to a false null hypothesis.
The following is the procedure used for each simula-

tion.
R ← ∅
sumP← 0.0
i← 0
repeat
i← i+ 1
Generate Fi

sumP← sumP + |Fi| · pmin
i

if sumP ≤ α then
R← R∪ {hmin

i }
end if

until sumP > α

To generate each Fi, subfamilySize simulated null hy-
potheses were generated. Each was designated as either true
or false, with probability pTrue of being designated true.
Each true null hypothesis was assigned a simulated p-value
drawn uniformly at random from [0, 1] and each false null hy-
pothesis was assigned a simulated p-value drawn uniformly
at random from [0,maxFalsePVal]. Having lower p-values
for false null hypotheses simulates the use of a test statistic
that is useful for discriminating between true and false null
hypotheses.
We performed two experiments. In the first experiment

subfamilySize was set to 100, pTrue was varied from 0.00 to
1.00 in steps of 0.1 and maxFalsePVal was set to each of the
values 1.0, 0.1, 0.01 and 0.001, creating a total of 44 treat-
ments. 100, 000 Monte Carlo simulations were conducted for
each treatment and the FWER and average number of true
discoveries per simulation determined.
Figure 2 presents a surface chart that shows the impact

on FWER as the relative frequency of true to false null hy-
potheses is increased and as the p-values of false null hy-
potheses decrease relative to those of true null hypotheses.
As the probability of a true null hypothesis increases, so too
does the FWER. This is to be expected, as FWER must be
zero when all null hypotheses are false and should be more
likely when all null hypotheses are true. Indeed, when all
null hypotheses are true, FWER only occurs for family F
if a null hypothesis is rejected from its first subfamily, F1.
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Figure 3: The true discoveries of SMT as the rel-
ative frequency of true to false null hypotheses is
increased and the relative p-values of false relative
to true null hypotheses is decreased

As the test for the first subfamily is a conventional Bonfer-
roni correction, the FWER must be strictly controlled when
all null hypotheses are true.
In contrast, the relative p-values of true and null hypothe-

ses (that is, the power of the simulated test statistic) has
little impact on FWER.
Figure 3 shows the effect on true discoveries of the same

factors. As can be seen, true discoveries increase as the ratio
of false to true null hypotheses increases and as the relative
p-value of a false null hypothesis decreases. Recall that true
discoveries occur when a false null hypothesis is rejected and
hence the true alternative hypothesis is accepted. Clearly
there can be no true discoveries when all null hypotheses
are true. Conversely, when all null hypotheses are false,
all rejected null hypotheses will be true discoveries. In all
cases where there are false null hypotheses, the number that
are rejected will be determined by their relative p-values,
which is why the number of rejections rises as maxFalsePVal
decreases.
As maxFalsePVal had negligible effect on FWER, in the

second experiment maxFalsePVal was set to 0.01, pTrue was
again varied from 0.00 to 1.00 in steps of 0.05 and subfam-
ilySize was set to each of the values 1, 10, 100 and 1, 000,
again creating a total of 44 treatments. As in the first ex-
periment, 100, 000 Monte Carlo simulations were conducted
for each treatment and the FWER and average number of
true discoveries per simulation determined.
Figure 4 presents a surface chart showing the effect on

FWER as the relative frequency of true to false null hy-
potheses is increased and as the subfamily size varies. Again,
when pTrue is 1.0 and FWER is determined by whether a
null hypothesis is rejected for the first subfamily or not, the
probability of FWER is strictly controlled by the equivalent
of a Bonferroni correction for the first subfamily. Like the
first experiment, and for the same reasons, FWER falls as
the proportion of false null hypotheses rises.
However, the speed at which FWER falls is greatly af-

fected by the subfamily size. Consider a scenario in which
each subfamily contains only a single null hypothesis. If the
first null hypothesis is true, the probability of FWER will be
exactly α. If the first null hypothesis is false and the second
is true, the probability of FWER will be exactly α/2, and
so on. Hence, when the probability of each null hypothesis
being true is high, FWER will be relatively high.
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Figure 4: The FWER of SMT as the relative fre-
quency of true to false null hypotheses is increased
and the relative p-values of false relative to true null
hypotheses is decreased
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Figure 5: The true discoveries of SMT as the rel-
ative frequency of true to false null hypotheses is
increased and the relative p-values of false relative
to true null hypotheses is decreased

In contrast, as the size of the subfamilies increases, the
probability of a subfamily containing false as well as true
null hypotheses increases, and the probability increases that
the hypothesis with the lowest p-value is false. As familywise
error only occurs when the lowest p-value for a subfamily be-
longs to a true null hypothesis, the FWER correspondingly
decreases.
Figure 5 shows the effect on true discoveries of the same

factors. Again, true discoveries increase as the ratio of false
to true null hypotheses increases. When the probability of
each null hypotheses being false is low, true discoveries are
highest when the subfamilies are largest, as this gives the
greatest chance of each subfamily containing some false null
hypotheses to correctly reject. However, as the ratio of false
to true null hypotheses increases, the smaller subfamilies
begin to reject the greatest number of false null hypotheses,
as most subfamilies will include false null hypotheses for
rejection, but the smaller subfamilies result in much higher
adjusted critical values, making it more likely that the false
null hypotheses will be rejected.
These simulations demonstrate the power of SMT, and

show that it is most effective when the ratio of false to true
hypotheses is highest and the relative p-values of false null



hypotheses is lowest. The impact of subfamily size is less
straightforward, however, depending on the other factors.

4. SMT FOR MODEL SELECTION
We demonstrate the power of SMT in the context of hill-

climbing search for graphical model selection, specifically,
where it is used to select interactions for inclusion in a log-
linear model within the Chordalysis system [27, 25, 26].
We have made the source-code available for SMT within
Chordalysis at https://github.com/fpetitjean/Chordalysis.

4.1 Background
The use of statistical tests and multiple correction meth-

ods for learning the structure of graphical models responds
to the need for explainable models (see e.g. [22] for ge-
nomics). Although long recognized by the data mining com-
munity, this highlights again that building an explanatory
model from data has a different objective to building a pre-
dictive model [31]. Learning graphical models for which we
place greater weight on being confident in the structure is
often called log-linear analysis in the statistical community
[4], which comes from the fact that the search is often per-
formed among log-linear models. Log-linear models that
are graphical are equivalent to Markov Random Fields (or
Markov Networks).
Both statistical and machine learning communities have

studied the use of statistical methods to learn the structure
of graphical models, from the well-known PC algorithm [18,
32], to recent work scaling statistical procedures to high-
dimensional data [5, 27, 40].
It is here also interesting to mention MML/MDL meth-

ods [28, 37] which, by building on Shannon theory of in-
formation, often produce an explanatory model. This is
intuitively because every additional parameter has to be ex-
plained away by enough data. Several works have stud-
ied these approaches for learning Bayesian Networks and
Markov Random Fields [1, 6, 25, 30].
It is finally interesting to mention methods based on `1-

regularizers, because they are often claimed to produce un-
derstandable models, by biasing the search towards models
for which many parameters are zero. Different configura-
tions have been studied: performing a logistic regression
for every variable independently [36], focusing on a reduced
subset of features [20] or finding a set of variables that best
divides the graph [11]. Note that these methods place great
weight on the predictivity of the model, which often leads
to a significant number of false discoveries (see for example
the precision trend depicted in [36] – Section 6). For this
reason, we will not consider these methods as being directly
related to statistical testing methods.

4.2 Using SMT for model selection
The refined algorithm is given in Table 1. We start with

a reference model M corresponding to the independence
model (no edges). We then collect the set E of all poten-
tial edges at this stage, i.e., all the V (V − 1)/2 edges. We
then iterate until either there are no edges in E that can
be added to the current reference modelM (which happens
if all edges have been added), or the addition of the best
edge does not satisfy our multiple correction. The process
can then be compared to the use of a budget of FWER
risk. Starting with the budget being α, at each iteration,
we remove from the budget the p-value associated with the

Table 1: Forward selection with SMT
Require: α: the requested FWER
Require: D: a dataset over V variables
Require: pval(M, edge): a statistical testing procedure re-
turning the p-value associated with the addition of an edge
to a model
M← (V, ∅) {independence model (empty graph)}
E ← {(v1, v2) : ∀v1, v2 ∈ V, v1 6= v2}
budget← α
while E 6= ∅ do
bestEdge ← arg mine∈E pval(M, e)
p← pval(M, bestEdge)
α′ = budget/|E − 1|
if p > α′ then
return M {would not be valid to add bestEdge}

end if
E ← E \ bestEdge
M←M∪ bestEdge
budget← budget− p · |E|

end while

accepted edge times the number of concurrent hypotheses
that were assessed at the same time as the best edge.

4.3 Experiments with synthetic data
Assessing the quality of model selection techniques re-

quires having knowledge about the multi-way interactions
that take place in data. Therefore we start by evaluating
the discovery with data that is sampled from known distri-
butions (sets of interactions and associated probability ta-
bles). This allows us to compare the discovered interactions
to the true structure from which the data was sampled.
Then, we show some results on real-world data.

4.3.1 Description of experiments
The task is, given some categorical data, to find the set

of correlations that were planted in the distribution from
which the data was drawn; all in an unsupervised manner.
There are two components to generating the data; first we
have to choose a graph structure that describes those cor-
relations, and then we have to parametrize the graphical
model. Note that, to ensure reproducibility of the experi-
ments described below, we have made the source-code for
generating the parameterized models and data available at
http://bit.ly/SourceDataGeneration.

Generation of the data.
To form graphs that are representative of the real-

world, we generate random scale-free graphs using the
Barabási–Albert (BA) model. This has desirable proper-
ties including that the degree distribution follows a power
law. BA models are parameterized with (1) the number of
nodes (i.e. the number of variables) and (2) the degree,
which controls the edge density in the graph. We add an
additional condition that the graph be chordal, in order to
match the class of models explored by the model selection
method that we use: Chordalysis.
Having the graph structure, all we need to generate data

is to parameterize the associated graphical model. Chordal
graphs each correspond to an equivalence class of Bayesian
Networks (BN); we can then use standard procedures for BN
parametrization. Each line of every Conditional Probability

https://github.com/fpetitjean/Chordalysis
http://bit.ly/SourceDataGeneration


Table (CPT) in the network encodes a multinomial distri-
bution. All we need is to control for the strength of the
encoded correlations. To this end, we use a flat Dirichlet
prior with concentration S (Dir(~S) for each multinomial).
The higher the value of α, the closer the multinomial will
be to a uniform distribution, and hence the more subtle the
correlation will be.
Finally, the last parameter corresponds to the number

of samples to generate. Each data sample is generated
independently by sampling the associated Bayesian Net-
work and using a secure pseudo-random number generator
(SHA1PRNG).
We thus have four parameters for each experiment:
1. V the number of variables

2. D the degree/density of the edges in the graph

3. S the subtlety of the correlations (inverse of strength)

4. N the number of samples
To assess the statistical efficiency of our proposed SMT,

we vary each of those parameters in turn, having set the
others to values we assessed as being reasonable: V = 100,
D = 3, S = 200 and N = 50, 000.

Evaluation measure.
The task is unsupervised recovery of the edges2 that were

introduced in the graphical model that generated the data.
The number of true/false positives/negatives are thus suf-
ficient statistics for the evaluation; we can then study the
precision, which is the proportion of discoveries that are
true discoveries (rejected null hypotheses that are false),
and recall, which is the proportion of false null hypothe-
ses that are rejected. The precision obtained across all ex-
periments is consistently 100%; for clarity we thus only re-
port the recall and made all precision graphs available at
http://bit.ly/SyntheticResults for cross-check.
We generated over 7,000 datasets in order to study the

influence of each parameter on statistical efficiency; each
experiment is run 20 times. We report mean and standard
deviation.
We compare our novel multiple testing procedure (SMT)

to the state of the art:
1. Bonferroni correction [3]

2. layered critical values introduced in [39] and integrated
in Chordalysis in [27]; we then use different layering
‘consuming’, at each step either 50%, 1% or 1%� of
the budget. Note that this reformulation in terms of
budget is one of the novel contributions of this paper;
layered critical values typically uses 50% [27].

3. an MDL/MML scoring technique [25]; MDL and MML
are known for their low false-discovery rates, because
intuitively, each parameter has to be justified in terms
of gain in the compression of the data.

We use a critical value of α = 0.05; note that we have also
ensured that our results hold for α = 0.001 (as per recent
recommendations in [17]).

2Note that the original graph structure is undirected, actu-
ally forming an equivalence class of Bayesian Networks. The
use of any BN within this class would result in the same joint
probability under maximum likelihood.
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Figure 6: Study of the variation on the number of
instances. Note that the x-axis is in log-scale.

4.3.2 Varying the number of instances
We vary N from 1, 000 to 1, 000, 000. Results are depicted

in Figure 6. Recall generally increases as the data quan-
tity increases, as more data provides more evidence of the
planted correlations. SMT uniformly dominates state-of-
the-art methods by recovering significantly more of the true
structure. The performance of the remaining approaches
is uniformly ordered Layered-1%, Layered-1%�, Bonferroni,
MML/MDL and then Layered-50%.
We can observe from these results that most parameteri-

zations of the layered correction can beat the full Bonferroni
correction. This was to be expected given that the Bonfer-
roni gives a uniform weight to any test in the search, while
layering puts more weight on the start of the search. Setting
the right layering value is however extremely complicated,
because it corresponds to giving a prior as per the number
of edges to be found and the distributions of their p-values.
For instance, if only few edges are to be discovered, then a
high layering value will perform well, while low values should
be preferred if many edges are to be discovered. This how-
ever raises an important obstacle to the discovery, because
there is no way to correctly set this value. By contrast, our
proposed SMT does not require to set any parameter, and
also significantly dominates all other methods. We will see
in the next section that this superiority is substantial for
real-world data where the amount of data is fixed.

4.3.3 Varying the number of variables
We vary V from 10 to 1, 000. Results are depicted in

Figure 7. Recall generally decreases with the number of
variables, which is due to the fact that the density is kept
constant; a higher number of variables translates into more
and higher-order correlations to be found.
Here again, SMT dominates Layered and MML, with re-

call declining as the number of variables increases. It is
however interesting to note that while SMT uniformly
dominates, the relative positioning of other methods dif-
fers depending on the number of variables. For instance,
MML/MDL performs quite poorly in this experiment when
the number of variables is low, but substantially beats
Layered-50% from 40 (101.6 ≈ 40) variables. Similarly,
Layered-1% performs well for medium size graphs, but is
outperformed by Layered-1%� when the number of variables
is high. This is because with more variables and the den-
sity kept constant, there are more correlations to find, which

http://bit.ly/SyntheticResults
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Figure 7: Study of the variation on the number of
variables. Note that the x-axis is in log-scale.
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Figure 8: Study of the variation of the den-
sity; the x-axis corresponds to the degree in the
Barabási–Albert (BA) graph model. High value
means more complex graph.

calls for a more ‘spread out’ use of the budget. Here again,
SMT not only outperforms all approaches, but does so with-
out having any parameter to set.

4.3.4 Varying the density of edges in the graph
We varyD from 10 to 1 in steps of 1. Note thatD controls

for the size of the largest cliques in the graph, which means
that the complexity of finding edges grows exponentially
with D. Results are depicted in Figure 8. Again, SMT uni-
formly dominates all other methods; observations are similar
to the experiment varying the number of instances.

4.3.5 Varying the subtlety of the correlations
We vary S from 50 to 500 in steps of 50; recall that S cor-

responds to the concentration parameter of a Dirichlet prior
put on the multinomial probabilities of the parameterized
model. Intuitively, low values of S lead to peaked multi-
nomial distributions (thus easier to find), while high values
lead to multinomials that are close to uniform (thus difficult
to find). Results are depicted in Figure 9. SMT uniformly
dominates other methods. Observations are similar to the
experiment varying the number of instances with the slight
difference for S > 450 where Layered-50% slightly outper-
forms MML/MDL approaches. This is because the absolute
value of the recall is very low for high S. We posit that
it might then favor statistical approaches that are able to
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Figure 9: Study of the variation on the strength
of correlation. Low values in the x-axis represent
strong correlations (thus easier to find).

“spend most of the risk budget,” even though one single edge
might not be extremely significant. In contrast, MML/MDL
approaches decide upon acceptance without looking at the
risk that has been spent at previous steps: a model is ac-
cepted if it is more probable without any consideration of
the multiple testing problem.

4.3.6 General comment
It is clear from these experiments that SMT signifi-

cantly outperforms state-of-the-art approaches for explana-
tory model selection (also known as log-linear analysis). We
have also drawn a few interesting observations as per the
statistical efficiency of other methods. We showed that
the setting of the layering parameter makes the layered
search method range from very poor performance to second-
best. Such parametrization is however problematic because
it equates to a prior on the distribution of the p-values for
the hypotheses that will be tested. This shows a second
advantage to SMT, which outperforms all other methods,
without requiring tuning of any parameter.

4.4 Real-world data
We use a broad range of real-world datasets, with both

various number of variables and various quantities of data:

Mushroom the classical mushroom dataset, 22 variables,
8k examples [21].

EPESE epidemiological study of the elderly, 25 variables,
14k examples [33].

Internet demographic information on internet users, 70
variables, 10k examples [13].

CoIL2000 insurance customer management, 86 variables,
6k examples [35].

MITFace face recognition dataset, discretized to 4 bins us-
ing equal frequency, 362 variables, 31k examples [23].

Finance stock performance of the companies listed in the
S&P500 over 20 years of trading, 500 variables.

Protein Multiple alignment of the Serpin family of pro-
teins, 750 variables, 212 proteins [16].



Table 2: Number of edges found in the resulting
models for real-world datasets.
Name Number of interactions found

MDL Bonferroni Best Layered SMT

Mushroom 21 76 78 79
EPESE 26 50 50 53
Internet 137 219 230 247
CoIL2000 67 168 169 173
MITFace 722 1,449 1,456 1,487
Finance 864 1,320 1,465 1,640
Protein 4 321 399 471
Orphamine 650 283 394 506
ABC 1,408 1,842 2,102 2,426
NYT 9,352 15,778 15,429 17,741

Orphamine Frequency of occurrence of 1,260 symptoms
for 2,600 rare diseases (1,260 variables and 2,600 ex-
amples) [24].

ABC Use of the 500 most interesting (as per tf ?idf) words
in all the news articles about Melbourne published by
the Australian Broadcasting Network (ABC), 500 vari-
ables, 35k examples.

NYT Use of the 2,000 most interesting words in 10% of the
articles published by the New York Times from 1987
to 2007, 2,000 variables, 180k examples [29].

Where licensing restrictions permit us to do so, we
have made these datasets available at http://bit.ly/
RealWorldResults.
We report in Table 2 the number of interactions found by

the Chordalysis framework using the SMT, layered critical
values and MML/MDL frameworks. Note that for clarity of
the presentation, we report the best result obtained by the
three parameterizations of the layered framework; note that
this is significantly ‘helping’ it.
The results show that SMT significantly outperforms

state-of-the-art approaches that control for FWER.
The only possibly surprising result is for the Orphamine

dataset where the MDL/MML approach retrieves more
edges than SMT. It is here important to remind the
reader that we included MML/MDL approaches for refer-
ence only. MDL/MML approaches neither explicitly con-
trol for FWER, nor offer guarantees about it, as opposed
to layered critical values and SMT. We thus posit that for
the Orphamine dataset, the distribution of the successive
tested hypotheses lead to MDL/MML having a high FWER.
Orphamine is indeed a particular dataset with high num-
ber of variables and few examples; this translates into a high
number of weak associations to find, because the number of
samples is too low to have strong indications of the inter-
actions. This has different consequences for statistical and
MDL/MML frameworks:

• For SMT, it means that a significant part of the
‘risk budget’ is consumed for each edge that is found.
Quickly after 500 edges, all of the budget has been
consumed.
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Figure 10: Study of SMT’s use of the statistical sig-
nificance ‘budget’ compared to p-values of the inter-
actions up to 650 edges.
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Figure 11: Compared graphs of correlations ex-
tracted from the EPESE dataset by the all statisti-
cal methods and SMT. Edges found by both frame-
works are depicted in black. The three edges found
by SMT but not using layered critical values are
depicted in dashed blue lines. Edge weights cor-
respond to the decrease in entropy associated with
their addition — a proxy for strength of correlation.

• Conversely for MDL/MML, the decision of accepting
an edge does not take into account any of the previous
decisions. This means that they do not control for the
fact that many weak correlations might have already
been accepted in the search, resulting in a potential
high FWER.

This interpretation is confirmed by Figure 10, where we plot
the p-value of the first 650 steps of the process (without
stopping criterion on FWER). We can see that the p-values
of edges accepted at step 506 (when SMT stops) are not
substantially different to the ones that would be accepted
at step 650 (when MML/MDL stops) and increase slowly.
SMT doesn’t stop because of the significance of the current
edges, but only because of the previous actions that have
consumed the budget. Because MML/MDL decides upon
acceptance without looking at what has been done in the
previous steps, it naturally follows that it would be able to
keep finding edges.
We make all the graphs obtained for all methods and all

datasets at http://bit.ly/RealWorldResults. We give an ex-
ample of results on the medical dataset EPESE in Figure 11.
EPESE corresponds to an epidemiological study of the el-

derly conducted by [33] in the U.S. between 1981 and 1987,
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and named Established Populations for Epidemiologic Stud-
ies of the Elderly (EPESE). The study goals were to describe
and to identify predictors of mortality, hospitalization, and
placement in long-term care facilities and to investigate risk
factors for chronic diseases and loss of functioning. The sur-
vey elicited information from persons 65 years of age and
older in four geographic locations in the U.S. The publicly
available baseline data covers demographic characteristics
(age, sex, race, income, education, marital status, number
of children, employment, and religion), height, weight, social
and physical functioning, chronic conditions, related heath
problems, health habits, self-reported use of dental, hospital
and nursing home services, and depression.
Many of the multi-way relationships that have been re-

trieved have supporting evidence. For example, the obvious
interaction between being married and having been married
is included in the selected model. Many high-order inter-
actions including age and gender and a third variable have
been identified by Chordalysis. This is for example the case
for the Married variable. The corresponding interpretation
is simple: it is more likely to be married for an old patient
than a young one, and it is well-known that women get mar-
ried earlier than men. More generally, if the patient is older,
then there has been a longer period over which they have
had the opportunity to have smoked, been married or have
retired (and hence be not working). Moreover, many medi-
cal conditions or social behaviors depend upon the gender.
It is thus consistent that our approach identified many high-
order interactions including age and gender.
Most identified interactions also have a direct medical in-

terpretation. This is the case for the relationship between
diabetes and taking insulin, between smoking (or having
smoked) and having had cancer, between ability to walk and
having had a stroke, between diastolic and systolic blood
pressure, between having high blood pressure and taking
medications for it, or between having had a heart attack
and experiencing shortness of breath.
More interestingly, we can note the direct correlation be-

tween smoking and being married, which finds some sup-
porting evidence in [7, 15]; and the one between diabetes
and stroke, which is now suggested by several medical stud-
ies (see http://bit.ly/DiabetesStroke), because untreated di-
abetes tends to narrow blood vessels.
Finally, SMT finds 3 more edges than any other method:

• correlation between weight and working; this is sup-
ported by recent studies suggesting a tendency to gain
weight for women when retiring [10].

• correlation between heart attack and having pain walk-
ing; Manesh Patel, MD. says that ‘some forms of
leg pain can be the first sign of heart disease [...]
when leg pain occurs each time you engage in exer-
cise or movement, and it stops soon after you stop,
it could be a sign of peripheral arterial disease’ (see
http://bit.ly/LegPainHeatAttack).

• height and cancer; although this might seem like a very
unexpected correlation, a recent large-scale study in
the Lancet journal of Oncology found that, for women,
‘every 10 cm increase in height [...] risk increased for
15 of the 17 cancers studied’ [12].

5. CONCLUSIONS
We have introduced the first multiple testing correction

for streams and cascades of statistical hypothesis tests.
Monte Carlo simulations demonstrate the statistical power
of the approach. A case study of its application in model
selection demonstrates its practical utility.
This work opens up multiple avenues of research. Is it

possible to improve the power of the technique? Can it
be extended to rejecting multiple null hypotheses for each
subfamily? Is it possible to allow the decision of whether
to reject a null hypothesis to be revisited in the light of
null hypotheses and evidence encountered when assessing
subsequent subfamilies?
It would also be interesting to study how to guarantee

the FWER with MML/MDL approaches. Our experiments
have repeatedly shown that such approaches lead to a sig-
nificantly reduced statistical efficiency. We believe that this
could be due to the fact that information theoretic meth-
ods implicitly set the significance threshold very low, and
hence do not use the whole “risk budget” that one might
be willing to spend. We believe that exploring how such a
tolerance can be integrated in Bayesian discovery processes
constitutes a very promising avenue of research.
Finally, our new type of multiple test correction opens

the possibility of new scientific experimental designs, where
multiple hypotheses are identified for assessment, that are
then assessed in order, with the exact hypotheses to be as-
sessed being determined by which are rejected as the process
unfolds. For example, a social science experiment might first
test the hypotheses that either a) a particular group suffers
from a specific disadvantage, or b) that the group enjoys a
specific advantage. If one of the associated null hypothesis
is rejected, then the researchers would assess alternative sets
of hypotheses that may reveal reasons for the advantage or
disadvantage that has been revealed in the first set of tests.
The results of these tests might open up further sets of more
detailed hypotheses to be explored in turn.
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