
Knowledge and Information Systems manuscript No.
(will be inserted by the editor)

Bayesian Network Classifiers using Ensembles and Smoothing

He Zhang · François Petitjean ·
Wray Buntine

Received: 23 Jul 2019 / Revised: 25 Nov 2019 / Accepted: 03 Feb 2020

Abstract Bayesian network classifiers (BNCs) are, functionally, an interesting class
of models, because they can be learnt out-of-core, i.e. without needing to hold the
whole training data in main memory. The Selective K-Dependence Bayesian Net-
work Classifier (SKDB) is state-of-the-art in this class of models and has shown to
rival Random Forest (RF) on problems with categorical data. In this paper, we in-
troduce an ensembling technique for SKDB, called Ensemble of SKDB (ESKDB).
We show that ESKDB significantly outperforms RF on categorical and numerical
data, as well as rivalling XGBoost. ESKDB combines three main components: (1) an
effective strategy to vary the networks that is built by single classifiers (to make it
an ensemble), (2) a stochastic discretization method which allows to both tackle nu-
merical data as well as further increases the variance between different components
of our ensemble and (3) a superior smoothing technique to ensure proper calibration
of ESKDB’s probabilities. We conduct a large set of experiments with 72 datasets
to study the properties of ESKDB (through a sensitivity analysis) and show its
competitiveness with the state of the art.

Keywords Bayesian Network Classifier · Ensemble Learning · Probability Smooth-
ing · Hierarchical Dirichlet Process · Attribute Discretization

1 Introduction

With the rapid development of Web technologies in the last decades, large datasets
are created everywhere, such as in social media, E-commerce and health care. In-core
algorithms, e.g. Random Forest (RF) (Breiman, 2001) and Support Vector Machine
(SVM) (Hearst, 1998), are less suited to large amounts of data because they require
the data to be stored in main memory. Out-of-core learners – i.e. algorithms that can

This research was partially supported by the China Scholarship Council under awards
201506300081 and the Australian Government through the Australian Research Council’s Dis-
covery Projects funding scheme (projects DP190100017 and DE170100037).

He Zhang, François Petitjean, Wray Buntine
Faculty of Information Technology, Monash University
E-mail: {he.zhang, francois.petitjean, wray.buntine}@monash.edu

https://orcid.org/0000-0001-9851-9414
https://orcid.org/0000-0001-5334-3574
https://orcid.org/0000-0001-9292-1015

2 He Zhang et al.

learn from a dataset without holding it fully in the main memory – appear to be more
suited to large quantities of data because of their ability to scale. Bayesian Network
Classifiers (BNCs) are out-of-core learners and thus show great potential; instances of
this class of classifiers include the famous Naïve Bayes (NB) (Lewis, 1998) algorithm,
Tree Augmented Naïve Bayes (TAN) (Friedman et al, 1997), K-Dependence Bayes
(KDB) (Sahami, 1996), as well as Selective KDB (SKDB) (Martınez et al, 2016),
which was shown to be competitive to RF on categorical data.

A BNC is a directed acyclic graph whose nodes represent the variables of the
dataset and edges indicate the direct dependencies between those variables. Gener-
ally the target or class variable is a parent of all other variables, with several addi-
tional connections existing between the other variables. The bias/variance trade-off
of BNCs can be easily tuned by putting a limit on the maximum number of parents
that a node can have. With k parents, the model then looks at all possible combina-
tions of the (k+1) nodes connected with each other. The higher the value of k, the
lower the bias of the algorithm (and usually the higher the variance as well).

SKDB is a highly scalable BNC that achieves a good trade-off between structural
complexity and classification performance by efficiently choosing the value of the
maximum number of parents (maxK). For large datasets, a higher complexity or low-
biased model is preferable because it allows the model to capture fine detail in data
more precisely. But this low bias model has more parameters and potentially higher
variance, leading to poorer predictions. As a result, more data is usually needed (or
a superior parameter estimation technique, as we will see later).

In this paper, we propose to ensemble the SKDB algorithm to both increases its
accuracy as well as to make it applicable to numerical data. There are two broad
frameworks for ensembling, Bayesian model averaging (Hoeting et al, 1999), first im-
plemented for Bayesian networks in (Madigan et al, 1995), and the more frequentist
style commonly associated with ensembles (Zhou, 2012) best illustrated by Random
Forest (Breiman, 2001). We use the second broad framework because it is more suited
to larger amounts of data.

The difficulty in creating an ensemble of a base classifier lies in varying the
results of the original classifier without raising the bias of the base classifier, and
while keeping the covariance between the (varied) classifiers low. To do this, we
combine two sources of stochasticity: (1) we vary the order in which the variables are
considered, which controls what combination of attributes will be considered and (2)
we vary the discretization for numerical attributes, which allows different ‘elemental’
classifiers of the ensemble to consider different cut-points. We will detail in Section 3
how these stochasticities are defined to obtain both high accuracy and diversity of
the elemental classifiers composing the ensemble. Finally, we add a third component
to ESKDB in using an advanced smoothing technique based on Hierarchical Dirichlet
Processes (HDP): it allows to control the variance of ESKDB further and, as we will
show, substantially improves accuracy and probability calibration.

We carry out an extensive set of experiments on 72 datasets with data quantity
up to 5M examples. We start by performing a large sensitivity analysis to show the
influence of each of the three contributions on our final ESKDB algorithm (vary-
ing the attribute order, varying the discretization and advanced smoothing). Having
shown that all three components indeed bring significant improvement to the clas-
sifier, we then proceed by showing how it compares with the state of the art. We
start by comparing ESKDB to existing Bayesian Network Classifiers (BNCs) – NB,
TAN, KDB, KDF, AODE and SKDB. We show that ESKDB significantly outper-

ESKDB Algorithm 3

NB TAN KDB KDF AODE SKDB ESKDB
Bayesian Network Classifiers

0.22

0.23

0.24

0.25

0.26

0.27

0.28
R

M
S

E

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

E
rr

or
 r

at
e

RMSE
Error Rate

Fig. 1 Average RMSE and error rate for NB, TAN, KDB, SKDB, KDF, AODE and
our proposed ESKDB classifier over the 72 datasets (list in Table 1)

.

forms state-of-the-art BNCs.This is highlighted in Figure 1. We then proceed to
compare ESKDB to non-BNCs. Our results show that ESKDB significantly outper-
forms both XGBoost (Chen and Guestrin, 2016) with default parameterization and
Random Forest (Breiman, 2001) and that its performance is not significantly differ-
ent from XGBoost with highly tuned parameters. We believe these are strong results
because ESKDB can handle both numerical and categorical data while being able
to perform with a limited number of passes over the data (and hence not needing to
load the data in main memory such as RF and XGBoost). We finally complete our
experiments’ section by studying the running time of ESKDB and give guidance on
using different smoothing methods on ESKDB.
The main contributions of this paper are as follows:

– A novel ensembling method for Bayesian Network classifiers – ESKDB – with
two novel elements:

– we vary the attribute order over the variables by sampling orders following
the mutual information with the class;

– we vary the number of cut-points for the discretisation of each numerical
attribute by sampling the information gain (and combined with the MDL
stopping criterion).

– An improved probability estimation technique: we add a prior to existing Hi-
erarchical Dirichlet Process smoothing techniques. The result is a sampler that
requires 10x fewer samples than the state-of-the-art one proposed in (Petitjean
et al, 2018).

Put together, these three components make ESKDB become the most accurate
Bayesian Network Classifier to date. It achieves better accuracy, better probabil-
ity calibration, can handle numerical attributes and does all these much faster than
the state-of-the-art BNC – SKDB-HDP (Petitjean et al, 2018). We show that our

4 He Zhang et al.

classifier runs virtually parameter-free and significantly outperforms Random Forest
and scores just behind a highly-tuned XGBoost algorithm.

The remainder of this paper is organised as follows. We review the background
and related work in Section 2. Section 3 describes our ESKDB algorithm. Results of
our extensive set of experiments are reported in Section 4. We conclude this paper
in Section 5.

2 Related Work and Background

2.1 Bayesian Network Classifier

Let capital letters X = (X1,X2, ...Xn) represent n attributes in a dataset. Lower case
letters x = (x1,x2, ...,xn) represent specific data values taken by these attributes for a
particular datum. In particular, Y is the class variable, and y is one of the possible
class labels that data x belongs to. The basic task of a classification problem is
to compute the conditional class probability distribution P(y|x) over all the possible
classes and assigns the class to x most suited given the context, for instance depending
on the trade-off between recall and precision desired.

A Bayesian Network (BN) B = ⟨G ,Θ⟩ is characterized by two parameters G and
Θ . G is a directed acyclic graph whose nodes and edges represent random variables
X1,X2, ...Xn and direct dependencies between those variables, respectively. We say Xi
is the parent of X j if Xi is pointing directly to X j via a single edge. Another parameter
Θ quantifies the network structure with a set of parameters θxi|Πi(x) = PB(xi|Πxi) for
each possible value xi of Xi, and Πxi of ΠXi , where ΠXi denotes the set of parents of
Xi in G . A BN defines the joint probability distribution over x given by

PB(x) =
n

∏
i=1

PB(xi|Πxi) =
n

∏
i=1

θxi|Πxi
(1)

When using a Bayesian Network as a classifier, the precision of posterior esti-
mates PB(y|x) matters rather than the precision of PB(y,x). As a result, it is usually
important to ensure that all variables in the class’ Markov blanket are connected
directly to the class. As a consequence, Y is the common parent for all the random
variables as shown in Figure 2. The conditional class probability of a BNC can then
be written as

PB(y|x) = PB(y,x)
PB(x)

=
θy ∏n

i=1 θxi|y,Πxi

∑y′∈Y θy′ ∏n
i=1 θxi|y′,Πxi

∝ θy

n

∏
i=1

θxi|y,Πxi
(2)

There are some basic BNCs that have been developed and gained popularity, in-
cluding NB, TAN, KDB and SKDB. We use Figure 2 to introduce these BNCs more
clearly.

NB (Lewis, 1998) is the simplest BNC with a strong independence assumption
that each attribute is conditionally independent of every other attribute given the
class label. This makes the class the parent of all other attributes and includes no
other edges (See Figure 2a).

TAN (Friedman et al, 1997) adds a single parent to each non-class attribute,
seeking to address the greatest conditional inter-dependencies. It uses the Chow-Liu
(Chow and Liu, 1968) algorithm to find the maximum-likelihood tree of dependencies

ESKDB Algorithm 5

Y

X1 X2 X3 X4

S
s

(a) NB

Y

X1 X2 X3 X4

S
s

(b) KDB-2

Fig. 2 Example BNC structures: Naïve Bayes on left and KDB-2 on right.

in polynomial time. The type of network learned by the TAN algorithm is called a
one-dependence estimator (ODE).

KDB (Sahami, 1996) allows each non-class attribute to have up to K parents,
where K is user-defined (See Figure 2b). It first sorts the attributes on mutual in-
formation with the class. Each attribute xi is assigned the K parent attributes that
maximise conditional mutual information (CMI) with the class out of those attributes
with higher mutual information with the class. SKDB (Martınez et al, 2016) extends
KDB by selecting values n∗ ≤ n and k∗ ≤maxK for a KDB over n∗ attributes with k∗

parents using incremental cross-validation.
AODE (Webb et al, 2005) is an augmentation of NB that relaxes the strong inde-

pendence assumption of NB by averaging over multiple structures that relax some of
the independence assumptions. In each of these structures, a different attribute is set
to be the parent of all other attributes. Then, at prediction time, class probability
estimates from the different structures are simply averaged. AODE is an efficient
classifier with the same simplicity as NB.

KDF (Duan and Wang, 2017) is an ensemble model combining multiple KDBs
by changing the predictive attribute orders. The ensemble size of KDF is equal to
the number of attributes in the dataset, where each base KDB estimator has a
different first attribute. KDF considers not only the mutual information between
attribute and the class but also the conditional mutual information between prior
selected attributes. The classification accuracy of KDF outperforms single BNCs
and AODE.

2.2 Bayesian Model Averaging

Bayesian model averaging for Bayesian networks was first suggested in (Buntine,
1991) for the unsupervised problem. An MCMC approach (Madigan et al, 1995)
works for smaller data sets for the unsupervised case and more recent variants use
the k-best structures (Tian et al, 2010). A variant of the problem is using model
averaging to predict the existence of individual arcs. When done as a whole, this
gives Bayesian structure discovery (Koivisto and Sood, 2004). For classification, an
approximate model averaging (AMA) scheme is proposed (Dash and Cooper, 2004).
This demonstrates, for classification, the effectiveness of model averaging versus
model selection, demonstrating a marginal improvement over NB. Model averaging

6 He Zhang et al.

techniques have also been developed for decision tree classification (Buntine, 1993;
Chipman et al, 1998), but these techniques generally do not scale for large data and
Random Forest is usually used in their place.

Having viewed the model averaging approach, which did not have the desirable
scaling properties of SKDB, we instead choose to use classical ensemble methods,
reviewed next. While for the Bayesian approach, the ensembles are sampled according
to the posterior, in the classical ensemble approach, custom techniques are needed
to sample ensembles.

2.3 Ensemble Learning

Ensemble learning improves the performance of single learners by training a set of
learners to solve the same problem and combining them. An ensemble is stronger
than a single learner for several reasons. First, ensemble methods can apply different
information from the training data by combining some equally performing single
learners. Second ensembles are more likely to include a better hypothesis than a
single learner. Third, ensembles can give better approximations to the true target
function than single ones (Zhou, 2015). Representatives of ensemble learning are
boosting (Freund and Schapire, 1995) and bagging (Breiman, 1996).

Boosting is an ensemble technique where new models are added to correct the
errors made by existing models. Although, boosting can be viewed as an additive
model rather than ensembling (Friedman et al, 2000). Models are added sequen-
tially until no further improvements can be made. XGBoost (Chen and Guestrin,
2016), short for eXtreme Gradient Boosting, is a scalable tree boosting system that
has recently dominated applied machine learning and Kaggle competitions for struc-
tured and tabular data. XGBoost has two major improvements: speeding up the tree
construction and proposing a new distributed algorithm for tree searching.

Bagging (Breiman, 1996) constructs an ensemble by generating multiple base
learners on different sub-training sets. These subsets are sampled with replacement
from the original training dataset, where the sizes of these subsets are the same as
the whole training set. RF (Breiman, 2001) is a variant of bagging that is considered
one of the most powerful ensemble methods. There are two aspects of randomness
for each decision tree in the forest: (1) random sampling from the original training
set to generate the subsets for each decision tree, as bagging does, and (2) randomly
selecting a subset of attributes for use by the conventional split selection procedure
to build the decision tree.

For an ensemble of T learners h1, ...hT , the well known bias-variance decompo-
sition can be further expanded, yielding the bias-variance-covariance decomposition
(Zhou, 2012). Without loss of generality, suppose that the individual learners are
combined with equal weights. The bias-variance-covariance decomposition of the
mean squared error of the ensemble is

MSE(H) = bias(H)2 +
1
T

variance(H)+

(
(1− 1

T

)
covariance(H) (3)

where averaged bias and averaged variance are the averages over the ensemble and
the average covariance is the averaged covariance over all possibly pairs (T (T −1)/2
covariances). This shows that ensembles can reduce the variance while retaining the
bias, but the individual learners need low average correlation. Thus to use ensembling

ESKDB Algorithm 7

well, we need good performing learners with lower correlation. Note, this intuition
also reflects Breiman’s experience in developing RF: a significant part of the effort of
developing an ensemble method is developing an appropriate algorithm for generating
alternatives for the ensemble.

2.4 Probability Smoothing

Maximum Likelihood Estimation (MLE) for partitioning algorithms gives probability
estimates only depending on the observed counts n1,n2, ...,nC for each class. The
probabilities can be written as pc =

nc
N , where C is the number of class labels. MLE

often give unreliable probability estimates, especially when nc has few counts or zero
counts, decreasing the accuracy and ranking performance of classifiers.

Laplace correction (Provost and Domingos, 2003) is the simplest smoothing
method. The strategy of this method is to add one to each count to turn zero counts
into non-zero ones. M-estimation (Zadrozny and Elkan, 2001) modifies Laplace cor-
rection, by computing the probabilities using pc =

nc+M×b
N+M , where b is the base rate

usually assumed to be b = 1
C . M is a parameter that controls how much scores are

shifted towards b, which is usually set to 1. Laplace correction is a special case of
M-estimation where M =C.

2.5 HDP Smoothing

HDP has recently proven to be very useful for language model smoothing (Shareghi
et al, 2017). Language models traditionally use hierarchical backoff smoothing, but
the techniques are highly customised for n-gram models and do not suit more general
trees. HDPs are combined with these (Shareghi et al, 2017) as a “finishing” method
to improve probability estimates. HDP smoothing is also applicable to hierarchical
models, like decision trees and BNCs (Petitjean et al, 2018). HDP smoothing assumes
that the conditional distribution of a leaf node in the hierarchical model is similar
to its parent node and the sibling nodes who share the common parent to it. This is
achieved using a hierarchical Dirichlet prior to all the parameters in the tree.

This section briefly reviews this hierarchical Dirichlet smoothing. Please refer to
(Petitjean et al, 2018) for more details about the theory, algorithm and their HDP
tree smoothing library in Java, the basis of our implementation.

Consider the case of estimating P(x|y,x1,x2, ...xn) where the variables x1,x2, ...xn
for n≥ 0 are the parents of x with a given order, resulting in a full joint table for all
the values of these variables. This full joint table can be represented as a decision tree
where the root node tests on y, all nodes at the first level split on x1, the second level
tests on x2 and so forth. A node at the leaf has the parameter vector θX |y,x1,x2,...,xn .
A node at the ith level has a latent prior parameter vector ϕX |y,x1,x2,...,xi . The full
hierarchical model is given by, for i = 1, ...,n−1

θX |y,x1,...,xn ∼ Dir(ϕX |y,x1,...,xn−1 ,αn)

ϕX |y,x1,...,xi ∼ Dir(ϕX |y,x1,...,xi−1 ,αi)

ϕX |y ∼ Dir(ϕX ,αy)

ϕX ∼ Dir
(

1
|X |

1,α0

)

8 He Zhang et al.

Here Dir(ϕ ,α) is the Dirichlet distribution parameterized1 by probability vector ϕ
and positive real α, which are the base distribution and the concentration parameter
respectively. In our model, the base distribution is the parent’s probability vector,
and α controls how similar the sampled distribution is to the base distribution. A
larger α means they should be more similar; it corresponds to an inverse variance.
Below we use a different α per level of the tree, though different configurations are
experimented with subsequently.

The probability smoothing formula is defined recursively as follows

θ̂X |y,x1,...,xn =
NX |y,x1,...,xn

N·|y,x1,...,xn +αn
+

α
N·|y,x1,...,xn +αn

ϕ̂X |y,x1,...,xn−1

ϕ̂X |y,x1,...,xi =
NX |y,x1,...,xi

N·|y,x1,...,xi +αi
+

α
N·|y,x1,...,xi +αi

ϕ̂X |y,x1,...,xi−1

Here NX |y,x1,...,xn are the observed vector of statistics for θX |y,x1,...,xn , and N·|y,x1,...,xn their
totals. The NX |y,x1,...,xi are the vector of sufficient statistics for ϕX |y,x1,...,xi generated by
the training algorithm.

This formula can be derived from the Chinese Restaurant Process (CRP) (Teh
and Jordan, 2010). Each node in the tree can be compared to a restaurant offering
|Y | dishes. Each data point in the node is a customer, where y∈Y are the dishes, and
NX |y,x1,...,xn is a vector of the number of customers who are eating dish y. Then a new
customer comes in and can sit in an existing table serving dish y with probability

Nx|y,x1,...,xn

N·|y,x1,...,xn +αn
, or choose to eat at another table with probability αn

N·|y,x1,...,xn +αn
.

The value of statistics for ϕX |y,... and the αs are sampled using Gibbs sampling (Du,
2011; Petitjean et al, 2018). Our method, however, does not use hierarchical CRP
methods, which have high memory consumption and are slow. Rather, we use an
efficient collapsed sampler, roughly doubling the memory requirements of simple
M-estimation and only a few times slower.

It has been illustrated in (Petitjean et al, 2018) that the concentration parameter
controls how similar the child probability will be to the parent probability. Since the
number of concentration parameters is equal to the number of nodes in the tree, there
are possibly too many to sample. So rather than using a separate concentration
parameter for every node, we tie some together to share the same concentration.
There are four different tying strategies experimented with as follows,

– None: no tying, each node has its own concentration parameter.
– Parent: the sibling nodes sharing the same parent are tied together.
– Level: the nodes on the same level are tied together.
– Single: all the nodes are tied together share one single concentration.

3 ESKDB: an ensemble of BN classifiers

This section describes our ESKDB algorithm. As we have discussed in Section 2.3,
good ensembles require that the base classifiers be as accurate as possible, and also
as diverse as possible. Our base learner is SKDB, which is deterministic. To build an

1 The more common representation Dir(α1, ...,αC) is not used here.

ESKDB Algorithm 9

ensemble, we inject stochasticity into the learning process of SKDB. We use two types
of stochasticity: (1) a stochastic selection of cut-points for continuous attributes,
and (2) sampling the attribute order for each SKDB classifier. We detail these two
sources of stochasticity and then present our improved smoothing technique (prior
and associated sampler for HDP). These ideas are motivated by the approach of RF
and the ensemble theory of Section 2.3, but modified for the particular characteristics
of Bayesian networks. The two sources of stochasticity are placed at the major design
points for KDB.

Algorithm 1 gives the general learning framework for ESKDB: it takes as inputs
a training set T and a user-supplied ensemble size E. It returns an ensemble model
B that consists of E different SKDB classifiers. B, which contains the base learners,
is first initialised (line 1). The for-loop learns E different SKDB classifiers one by one
(line 2-10). To learn the classifier i, we start by obtaining a randomized discretization
(with associated cut-points cutPointsi – described below in Section 3.1), then learn
the structure Gi of the Bayesian network and associated parameters and the param-
eters Bi in sequence. Sampling the cut-points means selecting preferred cut-points
stochastically for each continuous attribute in the training data T , as described in
Subsection 3.1. The training data is then discretized according to cutPointsi. Another
important contribution of learning the structure Gi is that its attribute order Oi is
randomly sampled (detailed below in Section 3.2). We then use the standard SKDB
algorithm (Martınez et al, 2016), with the difference that it is now parameterized by
our sampled order Oi and discretized dataset Ti. We finally add our improved HDP
smoothing to learn the parameters of the model (SKDB learns the structure only),
by using the method developed in (Petitjean et al, 2018) with our improved prior
and sampler (detailed in Section 3.3).

Algorithm 1: learnESKDB(T ,E)
Input : A training set T
Input : an ensemble size E
Output: An ESKDB model B

1 Let B← /0.
2 for i← 1 to E do
3 cutPointsi← learnDiscretizer(T). // Section 3.1
4 Ti← discretize(T ,cutPointsi)
5 Oi← randomSampleForOrders(Ti). // Algorithm 3
6 Gi← learnSKDB(Oi,Ti). // (Martınez et al, 2016)
7 Θi← learnParameters(Gi,Ti). /* build probability tables and smooth

estimates (see (Petitjean et al, 2018) and Section 3.3). */
8 Bi← (Gi,Θi,cutPointsi).
9 B←B∪Bi.

10 end
11 return B.

3.1 Randomized Discretization

The first source of stochasticity to vary the deterministic behaviour of our base
classifier SKDB is about discretization of numerical attributes. We achieve this by

10 He Zhang et al.

proposing a new randomized discretization method for continuous attributes based
on the method of MDLP (Fayyad and Irani, 1993). The question we answer in this
section is how to generate different discretizations that both good and varied. The
discretizations cannot be fully random or else the accuracy of the base learner would
degrade. What we propose here is, for each continuous attribute, to calculate the
quality of all the different cut-points (similarly to the standard MDLP discretizer),
but then instead of using the best cut point, we use all the quality values to build a
probability distribution from which we then sample. Sampling allows for variations
in the process, but the sampler is guided by the quality of the cut-points, which
means that bad cut-points have a very low probability of being selected.

Now that we have given the motivation for the randomized discretization, let us
give a few more high-level details before turning to the algorithm itself. The first step
is to identify all the candidate cut-points PA. This is standard: we sort all the values
of the attribute and use all the midpoint values for each pair of adjacent values. We
then score these candidates using information gain, which is the same criterion as
in MDLP. MDLP provides a minimum level of information gain for the attribute to
be discretized. We then subtract that minimum level from all the gains, zero-out the
negative values (the ones not passing the MDLP criterion), and normalize to 1. We
then obtain a categorical probability distribution, which we sample to choose a cut
point before calling the discretization recursively on the left and right sides of that
cut point. The additional case we add is to ensure we have at least one cut point: if
no candidate cut-point could pass the MDLP criterion, we sample a single cut point
from information gain.

Algorithm 2 details this process. The input is a set of possible cut-points P and
a flag f irstFlag. The output is a set of the selected cut-points Ps. The algorithm
starts by calculating the entropy vector (information gain) IG and the difference
vector IGt (line 3-14). If the extreme case occurs where no cut point could pass the
MDLP criterion, i.e. the ∑ IGt = 0 and this is not a recursive call (f irstFlag = true),
we normalize the entropy vector IG into a multinomial distribution, samples a cut
point and return it (line 16-26). Otherwise, sample a cut point from the normalized
IGt and recursively selects point for the left subset Pl = {p ∈P|p < ps} and the
right subset Pl = {p ∈P|p > ps} (line 28-35).

3.2 Randomized Attribute Ordering

The second source of stochasticity we use to vary our base learner SKDB is to ran-
domize its attribute order. As discussed in Section 2.1, the attribute order determines
the dependencies between the attributes that SKDB will use to make predictions. At-
tributes are usually ordered using mutual information and the top selected attribute
is more likely to be selected as the parent of another attribute. SKDB calculates the
Mutual Information MI(Xi;Y) to measure the correlation between attributes Xi and
the class Y . The attribute order is decided by sorting the attributes with the MI in
descending order. This is so that the attributes that correlate most with the class
are studied in combination with other attributes the most.

Our idea here is to randomize the order: instead of ordering the attributes by
sorting them on mutual information, we turn the mutual information to a probability
vector which we sample to find the first attribute. We then remove that attribute
from the potential choices (make its probability zero), renormalize and repeat until

ESKDB Algorithm 11

Algorithm 2: randomSampleCutPoints(P, f irstFlag)
Input : possible cut-points P
Input : f irstFlag← true if this is the first time this method been called to ensure we

have at least 1 cut point
Output: the selected cut-points Ps

1 Ps← /0
2 /* we sample cut-points by building a probability distribution over all the

possible cut-points. */
3 Let IG be a vector of the information gain for all the cut-points in P
4 Let IGt be a vector of the information gain minus the MDL threshold.
5 for each cut point p ∈P do
6 IGp← In f ormationGain(p)
7 thresholdp←MDL(p)
8 // refer to (Fayyad and Irani, 1993)
9 IGt

p← IGp− thresholdp

10 if IGp < thresholdp then
11 // if p doesn't meet the MDL criterion, then p will not be selected
12 IGt

p← 0
13 end
14 end
15 /* if all the cut-points do not meet the MDL criterion and f irstFlag = true ,

we assume that we get at least 1 cut point */
16 if ∑ IGt = 0 then
17 if f irstFlag then
18 Normalize IG into a probability distribution.
19 if ∑ IG ̸= 0 then
20 ps ∼ IG // sampling from a multinomial distribution
21 Ps←Ps ∪{ps}
22 return Ps

23 end
24 end
25 return /0
26 end
27 /* Otherwise, at least one cut point meet the MDL criterion */
28 Normalize IGt into a probability distribution.
29 ps ∼ IGt // sampling from a multinomial distribution
30 Ps←Ps ∪{ps}
31 /* recursively calling the left and right of ps */
32 Pl ←{p ∈P|p < ps}
33 Pr ←{p ∈P|p > ps}
34 Ps←Ps ∪ randomSampleCutPoints(Pl , f alse)
35 Ps←Ps ∪ randomSampleCutPoints(Pr, f alse)
36 return Ps

all attributes have been chosen. This ensures that attributes with high correlation
with the class are still likely to be in the top attributes, but makes it possible to
vary the base learners and hence lower their covariance. This process is described in
Algorithm 3. The method returns O a sampled attribute order to build an SKDB
classifier.

3.3 Improved HDP Smoothing

We have now seen the two main sources of stochasticity that we use to vary our base
learner and turn to our improved smoothing technique (or probability estimation).

12 He Zhang et al.

Algorithm 3: randomSampleForOrders(T)
Input : A training set T with attributes A
Output: Orders O

1 n← |A |
2 MI←{MIi← 0, i = 1, ...,n}
3 for each Ai ∈A do
4 MIi← mutualIn f ormation(Ai;Y)
5 end
6 Let O ← /0.
7 for i← 1 to n do
8 MI← normalize(MI) // normalize MI into a probability distribution that

sums to 1
9 z∼MI // sampling from a multinomial distribution

10 O ← O +Az.
11 MIz← 0. // make sure Az will not be selected again
12 end
13 return O

A critical issue for HDP estimation shown in (Petitjean et al, 2018) is its computa-
tional complexity. Petitjean et al (2018) show that the Gibbs sampler requires 50,000
iterations to obtain the most accurate probability estimates. The training time com-
plexity increases linearly with the number of iterations, and 50,000 iterations make
HDP extremely slow.

In this subsection, we show how to improve this significantly. In our new method,
1,000 iterations of the sampler are sufficient to give accurate estimates. We achieve
this by adding a more carefully crafted prior to the concentration parameter. Al-
gorithm 4 describes the sampling for concentration parameters in the tree, taken
from (Buntine and Mishra, 2014). In the experiments, we use a Gamma(2,1) prior
instead of the uniform prior of (Petitjean et al, 2018). This new prior corresponds
to a Gamma distribution with shape 2 and rate 1 (priorShape = 2 and priorRate = 1
in Algorithm 4). This is the default prior reported to work well with advance topic
models (Buntine and Mishra, 2014). To interpret this, note that α corresponds to M
in the M-estimate, so in estimation one adds α/|X | to the positive count. The prior
makes α have a prior mean of 2 and a prior standard deviation of 1.4. Moreover, one
is apriori 90% confident that α lies between and 0.36 and 4.7.

4 Experiments

This section aims to show the performance of our ESKDB algorithm in terms of accu-
racy, training time, and probability calibration. After having described the datasets
and setting in Section 4.1, we show that ESKDB is the best out-of-core BNC to date
(Section 4.2). We then proceed with a sensitivity analysis (ablation study) of ESKDB
about its two sources of stochasticity in ESKDB (Section 4.3), before settling the
question of ensemble size (Section 4.4). We then compare our superior HDP smooth-
ing technique to traditional m-estimation (Sections 4.5 and 4.6). We then compare
ESKDB to RF and XGBoost in Section 4.7. Finally, we study the running time for
all the models mentioned in this paper 4.8.

ESKDB Algorithm 13

Algorithm 4: sampleConcentration(α, nodes, priorShape, priorRate)
Input : α: concentration to sample
Input : nodes: nodes sharing this concentration parameter (tying)
Input : priorRate: prior on rate
Input : priorShape: prior on shape

1 rate← priorRate
2 sumT k← 0
3 for each node ∈ nodes do
4 q∼ Beta(α,node.n)
5 rate← rate− log(q)
6 sumT k← sumT k+node.t
7 end
8 α ∼ Gamma(sumT k+ priorShape , rate)
9 for each node ∈ nodes do

10 node.α ← α
11 end

4.1 Experiment Design and Setting

Design: An extensive set of experiments are conducted on 72 standard datasets,
where most of them are from the UCI archive (Lichman, 2013), but some larger
datasets are also included from (Martınez et al, 2016). Table 1 summarizes the char-
acteristics of 72 datasets, including the dataset name, size, number of attributes and
number of classes. A missing value is treated as a separate attribute value.

Software: To ensure reproducibility of our work and allow other researchers to
build on our research easily, we have made our source code for ESKDB available on
Github 2.

Evaluation Measure: We use 5 times 2-fold cross-validation for all the methods
and only a single run of 2-fold cross-validation for the six largest datasets. The results
are assessed by RMSE (Root Mean Squared Error) and error rate. Win-Draw-Loss
(WDL) is used when comparing two different models. A one-tail binomial sign test
is used to determine the significance of the results, using p≤ 0.05.

RMSE, in discrete contexts known as the Brier score, which is used to mea-
sure how well-calibrated the probability estimates are. We use RMSE as the most
important measure because the main research goal of this paper is to improve the
probability estimates, a reasonable proxy for a variety of other decision contexts.
RMSE is defined as

RMSE =

√
1
N

N

∑
i=1

(yi− ŷi)2 , (4)

where yi is the ground truth label and ŷ is the predicted label.
The error rate is the proportion of samples that are misclassified. It is defined as

error rate =
FP+FN

N
, (5)

where FP is the number of false-positive predictions and FN is the number of false-
negative predictions. N is the size of the test set. The smaller the RMSE and the
error rate, the better the performance of the model.

2 https://github.com/icesky0125/ESKDB-on-numerical-data

https://github.com/icesky0125/ESKDB-on-numerical-data

14 He Zhang et al.

Table 1 Datasets

Domain Case Att Class
Donation 5,749,132 12 2
Poker-hand 1,025,010 11 10
Census-income 299,285 42 2
Skin-Segment 245,057 4 2
Localization 164,860 6 11
Diabetes 101,766 47 3
Connect-4 67,557 43 3
Shuttle 58,000 10 7
Adult 48,842 15 2
LetterRecognition 20,000 17 26
Magic 19,020 11 2
Nursery 12,960 9 5
Sign 12,546 9 3
PenDigits 10,992 17 10
Thyroid 9,169 30 20
Mushrooms 8,124 23 2
Musk2 6,598 167 2
Satellite 6,435 37 6
Optical Digits 5,620 49 10
Texture 5500 41 11
Page Blocks 5,473 11 5
Wall-following 5,456 25 4
Nettalk(Phoneme) 5,438 8 52
Waveform-5000 5,000 41 3
Spambase 4,601 58 2
Abalone 4,177 9 3
Hypothyroid 3,772 30 4
Sick 3,772 30 2
Kr vs. kp 3,196 37 2
Splice-C4.5 3,190 62 3
Segment 2,310 20 7
Car 1,728 8 4
Yeast 1,484 9 10
Contraceptive-mc 1,473 10 3
German 1,000 21 2
LED 1,000 8 10

Domain Case Att Class
Vowel 990 14 11
Tic-Tac-Toe 958 10 2
Anneal 898 39 6
Vehicle 846 19 4
PIndiansDiabetes 768 9 2
BreastCancer-w 699 10 2
CreditScreening 690 16 2
BalanceScale 625 5 3
Syncon 600 61 6
Chess 551 40 2
Cylinder 540 40 2
Musk1 476 167 2
HouseVotes84 435 17 2
HorseColic 368 22 2
Dermatology 366 35 6
Ionosphere 351 35 2
PrimaryTumor 339 18 22
Heart Disease-c 303 14 2
Hungarian 294 14 2
Audiology 226 70 24
New-Thyroid 215 6 3
Glass-id 214 10 3
Sonar 208 61 2
Autos 205 26 7
Wine 178 14 3
Hepatitis 155 20 2
Teaching Assistant 151 6 3
Iris 150 5 3
Lymphography 148 19 4
Echocardiogram 131 7 2
Promoters 106 58 2
Zoo 101 17 7
Post-operative 90 9 3
Labor 57 17 2
LungCancer 32 57 3
Contact-lenses 24 5 3

Compared models and parameters: In our experiment we use BNCs including
NB, TAN, KDB, SKDB, AODE, KDF and ESKDB, and tree-based ensemble models
including RF and XGBoost. We compare HDP and M-estimation as the smoothing
techniques for them. Here M-estimation is used with a backoff strategy, which means
when the leaf node has no data, back off the probability estimates to its nearest non-
empty ancestor. The list of parameter settings is shown in Table 2.

4.2 ESKDB is better than existing BNCs

In this section, we compare several single BNCs, including NB, TAN, KDB and
SKDB with our proposed ensemble model ESKDB using M-estimation. This is to
show the benefit of ensembling of our model. Besides, we also compare ESKDB with
two other existing ensemble models of BNCs, including AODE and KDF. This is to
show our ensembling technique is better than others. The ensemble size of ESKDB
is set to be 10 in this part.

ESKDB Algorithm 15

Table 2 List of parameters

Methods Parameter Description

BNCs maxK = 5 Maximum number of parents allowed for SKDB
E = 10 Ensemble size

HDP
Iteration = 1000 Gibbs sampling iteration
BurnIn = 100 Collect counts after sampling for 500 times
Tying = LEV EL Same LEVEL nodes share the same concentration

M-
estimation M = 1/C The value for calculating M-estimation, C is the

number of class labels

RF F = 100 Number of trees
Atts = log2(n)+1 Numbers of attributes for each splitting nodes

XGBoost

ob jective = multi :
so f t prob Softmax objective returns predicted probability
num_rounds =
10,50,100 The number of rounds for boosting
max_depth =
2,4,6,8 Maximum tree depth

Table 3 Win-Draw-Loss for the ESKDB compared with existing BNCs. The value in
boldface is statistically significant better tested by a one-tailed binomial sign test. A
difference is considered to be significant if p≤ 0.05.

ESKDB vs. RMSE Error rate
NB 63-0-9 60-1-11
TAN 64-0-8 57-2-13
KDB 64-0-8 61-2-9
KDF 71-0-1 67-2-3
AODE 62-1-9 60-0-12
SKDB 60-0-12 59-3-10

Figure 1 shows the averaged RMSE and error rate over all the datasets for each
model mentioned above, which are represented by blue curve and red curve respec-
tively. It clearly shows that our ESKDB with only 10 classifiers gets much better
performance than other models both on RMSE and error rate. Table 3 is the WDL
result of comparing ESKDB with the existing BNC models. Values in boldface are
statistically significant better tested by a one-tailed binomial sign test. A different is
considered to be significant if p≤ 0.05. It can be seen from this table that ESKDB
is significant better than all of the existing BNCs both on RMSE and error rate.

4.3 The benefits of the two stochasticities in ESKDB

In this section, we show the benefit of the two stochasticities in our ESKDB model.
The first one is that the cut-points are randomly selected for each SKDB classifier in
the ensemble. The second one is that the attribute order of each SKDB is randomly
selected.

First, to show the benefits of the first stochasticity, we compare ESKDB with
ESKDB_randomO, which represents ESKDB with stochasticity on attribute orders

16 He Zhang et al.

0 0.1 0.2 0.3 0.4 0.5
ESKDB

0

0.1

0.2

0.3

0.4

0.5

E
S

K
D

B
_r

an
do

m
O

RMSE

Here ESKDB wins

Here ESKDB_randomO wins

0 0.1 0.2 0.3 0.4 0.5
ESKDB

0

0.1

0.2

0.3

0.4

0.5

E
S

K
D

B
_r

an
do

m
O

Error Rate

Here ESKDB wins

Here ESKDB_randomO wins

Fig. 3 Scatter plot of ESKDB with ESKDB_randomO

only (no random discretization, but just straight MDLP discretization). Figure 3 is
the scatter plot ESKDB with ESKDB_randomO on both RMSE and error rate. It
can be seen from this figure that the random selection of the cut-points makes ES-
KDB perform better both on RMSE and error rate compared with same cut-points in
ESKDB_randomO. The averaged RMSE value of ESKDB and ESKDB_randomO
are 0.2248±0.016 and 0.2326±0.017, respectively.

Second, to show the benefits of the random selection of the attribute order for
each SKDB classifier, we compare ESKDB with ESKDB_randomCP, which repre-
sents ESKDB but where the attribute orders are not sampled. Figure 4 is the scatter
plot of ESKDB and ESKDB_randomCP. It can be seen from this figure that ES-
KDB performs slightly better than ESKDB_randomCP, which indicates that the
second stochasticity of the attribute orders can also make our ESKDB model have
more diversity and get better results.

To compare the importance of these two randomnesses, we show the scatter plot
of ESKDB_randomCP with ESKDB_randomO as shown in Figure 5. It can be seen
from this figure that the two versions of ESKDB have a quite similar effect on ES-
KDB. The averaged RMSE value of ESKDB_randomO and ESKDB_randomCP are
0.2326±0.017 and 0.2312±0.017, respectively. This indicates that the randomness
of the cut-points makes ESKDB slightly better than the randomness of the attribute
orders.

4.4 The ensemble size of ESKDB

In this part of the experiment results, we show how ESKDB performs with different
ensemble sizes, including 1, 10, 20, and 30. Figure 6 shows that both RMSE and error
rate has a big improvement when ensembling on 10 SKDB classifiers compared with 1
classifier. However, even we increase the ensemble to 20 and 30, further improvement

ESKDB Algorithm 17

0 0.1 0.2 0.3 0.4 0.5
ESKDB

0

0.1

0.2

0.3

0.4

0.5

E
S

K
D

B
_r

an
do

m
C

P

RMSE

Here ESKDB wins

Here ESKDB_randomCP wins

0 0.1 0.2 0.3 0.4 0.5
ESKDB

0

0.1

0.2

0.3

0.4

0.5

E
S

K
D

B
_r

an
do

m
C

P

Error Rate

Here ESKDB wins

Here ESKDB_randomCP wins

Fig. 4 Scatter plot of ESKDB with ESKDB_randomCP

0 0.1 0.2 0.3 0.4 0.5
ESKDB_randomCP

0

0.1

0.2

0.3

0.4

0.5

E
S

K
D

B
_r

an
do

m
O

RMSE

Here ESKDB_randomCP wins

Here ESKDB_randomO wins

0 0.1 0.2 0.3 0.4 0.5
ESKDB_randomCP

0

0.1

0.2

0.3

0.4

0.5

E
S

K
D

B
_r

an
do

m
O

Error Rate

Here ESKDB_randomCP wins

Here ESKDB_randomO wins

Fig. 5 Scatter plot of ESKDB_sameO compared with ESKDB_sameP

is not so big. This indicates that our ESKDB with only 10 classifiers already gives
good results. In the following experiments, 10 is used for ESKDB.

18 He Zhang et al.

1 10 20 30
Ensemble Size

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28
RMSE
Error Rate

Fig. 6 The RMSE and error rate changes as the increasing of the ensemble size.

4.5 Improved HDP

In this part of the experiment results, we test the four different tying strategies of
HDP smoothing on ESKDB and the benefit of the new Gamma prior, as was dis-
cussed in Section 3.3. The four different tying strategies are explained in Section 2.5.
Figure 7 shows the RMSE of HDP smoothing using four different tying strategies
and two different priors. It can be seen from this figure that no matter which tying
strategy HDP used, the result of the new Gamma(2,1) is always better than the
uniform prior. Besides, the Level strategy gets the best performance among all the
four tying strategies. The Level tying strategy and the Gamma(2,1) prior are used in
the following experiments.

4.6 HDP compared with M-estimation for ESKDB

HDP has been shown for single BNCs to achieve more accurate parameter estimates
compared with M-estimation. Here we aim to verify that HDP could also improve the
performance of ensemble models. Note that for decision trees, conventional wisdom
is that no smoothing leads to superior results with ensembles (Bostrom, 2007), but
we need to check the case for BNCs.

Table 4 is the WDL of HDP compared with M-estimation applied to ESKDB.
We can see from this table that HDP outperforms M-estimation for ESKDB on
both RMSE and error rate. This indicates that HDP smoothing is helpful both to
single and ensemble models. The average performance for HDP and M-estimation
are shown in Table 5. HDP makes the RMSE improve from 0.2252 to 0.2227 with a
cost of 7 times longer training time.

Both M-estimation and HDP can get good estimates, but they have advantages
and shortcomings. M-estimation on ESKDB gets good results compared with the
state-of-the-art classifiers with only a limited learning time. HDP achieves better

ESKDB Algorithm 19

None Parent Level Single
Tying Strategies

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

0.25
RMSE

Gamma(2,1)
No Prior

Fig. 7 The HDP smoothing using different tying strategies and the new prior.

Table 4 Win-Draw-Loss for the ESKDB using HDP and M-estimation. The value in
boldface is statistically significant better tested by a one-tailed binomial sign test. A
difference is considered to be significant if p≤ 0.05.

Smoothing methods RMSE error rate
HDP vs. M-estimation 48-1-23 38-7-27

Table 5 Averaged performance of ESKDB using HDP and M-estimation

Smoothing RMSE error rate Time (s)
M-estimation 0.2252±0.016 0.1559±0.017 25
HDP 0.2227±0.016 0.1536±0.017 190

performance but with a cost of computation. We recommend the use of HDP for
ESKDB and use that configuration in the remainder of this paper.

4.7 ESKDB compared to Random Forest and XGBoost

In this section, we compare our ESKDB model with the two state-of-the-art en-
semble classifiers: Random Forest (RF) and XGBoost. RF is built with 100 trees,
to pure leaves, and with the number of randomly selected features to be atts =
log2(|A|)+1 where |A| is the total number of attributes. XGboost is an advanced im-
plementation of gradient boosting algorithm. We present two versions of XGBoost:
XGBoostde f ault , which uses default parameters (max_depth = 6 and num_rounds =
100); and XGBoosttuned , for which we tune max_depth and num_rounds using 10-
fold cross-validation (we use values {10,50,100} for num_rounds and {2,4,6,8} for
max_depth).

20 He Zhang et al.

Table 6 ESKDB compared with RF and XGBoost

Classifier RMSE error rate Time (s)
RF 0.2314±0.016 0.1563±0.018 6.8
XGBoostde f ault 0.2288±0.018 0.1565±0.018 2.7
ESKDBM 0.2252±0.016 0.1559±0.017 25
ESKDBHDP 0.2227±0.016 0.1536±0.017 190
XGBoosttuned 0.2179±0.017 0.1496±0.017 60

Our ESKDB method runs basically parameter-free, with the only parameter
controlling the maximum depth of our trees – maxK – which we set to 5. Note that
the higher maxK, the higher the accuracy as the actual value of K is cross-validated
internally with a fast leave-one-out cross-validation in SKDB.

Tables 6 gives the average classification performance over all the datasets listed
in Table 1. We can observe from Table 6 that, compared to RF, ESKDB has simi-
lar error rate but much better-calibrated probabilities. This result also holds when
compared to XGBoost ran with default parameters. Performing a grid-search for the
best XGBoost parameters allows it to turn ahead of the competition. It is important
to remember here that the aim of this paper is not to show that ESKDB should now
replace any other algorithm ‘on the market’, but rather that it is possible to obtain
very accurate classifiers based on Bayesian Network classifiers. Also, note that our
algorithm runs completely out-of-core while XGBoost does require large amounts of
data to be stored in memory and on-disk. Table 7 gives a similar story with ESKDB
finishing just behind a tuned version of XGBoost.

Figure 8 shows the comparison between ESKDBHDP and XGBoostde f ault and
XGBoosttuned in detail (ESKDBHDP wins above the diagonal line). This plot is in-
teresting in that it shows the diversity of results obtained by XGBoost and ESKDB,
with the results quite spread on either side of the diagonal line. This tends to indi-
cate that there is some important benefit in having ESKDB available because even
if the average RMSE is better for a tuned version of XGBoost, there are still many
datasets for which ESKDB obtains a significant improvement over it. One point
stands out particularly on the right scatter plot with XGBoosttuned obtaining almost
a 0.2 improvement over ESKDBHDP, which corresponds to the “tic-tac-toe” datasets.
This toy dataset is very particular as it contains all the end-game boards of a ‘tic-
tac-toe’ game, and only a single instance for each one (9 attributes, with 3 possible
values – empty, cross or circle). It requires deep structures to represent it, with many
combinations of 3 attributes to represent all combinations of aligned crosses. Unfor-
tunately, for this dataset, SKDB chooses to use k = 2, making it impossible to obtain
accurate estimates of the probabilities. If we remove that particular synthetic data,
ESKDBHDP gets extremely close to XGBoosttuned – see Table 8 – which shows the
high relevance of our proposed approach.

4.8 Running Time

In this section, we compare the training times for classifiers mentioned in this paper.
Table 9 lists the averaged results over all the datasets. As can be seen from this
table, it takes less than 5 seconds for NB, KDB, AODE and the default version of

ESKDB Algorithm 21

Table 7 WDL of ESKDB compared with XGBoost and RF. The value in boldface is
statistically significant better.

Classifier RMSE error rate
ESKDBM vs. RF 40-0-32 30-2-40
ESKDBM vs. XGBoostde f ault 38-1-33 30-3-39
ESKDBM vs. XGBoosttuned 27-0-45 26-2-44
ESKDBHDP vs. RF 42-0-30 36-2-34
ESKDBHDP vs. XGBoostde f ault 44-0-28 36-1-35
ESKDBHDP vs. XGBoosttuned 33-1-38 29-2-41

0 0.1 0.2 0.3 0.4 0.5
ESKDB

0

0.1

0.2

0.3

0.4

0.5

X
G

B
oo

st
_d

ef
au

lt

RMSE

Here ESKDB wins

Here XGBoost_default wins

0 0.1 0.2 0.3 0.4 0.5
ESKDB

0

0.1

0.2

0.3

0.4

0.5
X

G
B

oo
st

_t
un

ed
RMSE

Here ESKDB wins

Here XGBoost_tuned wins

Fig. 8 Scatter plot of ESKDBHDP with XGBoostde f ault and XGBoosttuned on RMSE

Table 8 ESKDB compared with RF and XGBoost without ”tic-tac-toe” dataset

Classifier RMSE error rate
RF 0.2304±0.016 0.1573±0.018
XGBoostde f ault 0.2303±0.018 0.1584±0.018
ESKDBHDP 0.2210±0.016 0.1535±0.017
XGBoosttuned 0.2191±0.017 0.1517±0.017

XGBoost to be learned. Both of TAN and KDF need 5.7 seconds, and RF needs
6.8 seconds to be learned. The parameter-tuned XGBoost needs 60 seconds to be
learned, which is around 22 times longer than XGBoostde f ault . This indicates that the
parameter tuning for XGBoost is time-consuming. ESKDBM with 10 SKDBs needs
25 seconds, which is 1.8 times longer than SKDB. HDP makes ESKDB 7.6 times
longer than M-estimation because of the 1,000 iterations of Gibbs sampling used. It
can be seen from this table that ESKDB_M is 2.4 times faster than XGBoost_tuned
and ESKDB_HDP is 3x slower than XGBoost_tuned, which we regard as a good

22 He Zhang et al.

Table 9 Averaged training time (seconds) for all the datasets

Classifier RMSE error rate Time (s)
XGBoostde f ault 0.2288 0.1565 2.7
NB 0.2753 0.2074 3
KDB 0.2557 0.1851 3.6
AODE 0.2498 0.1821 5
TAN 0.2568 0.1858 5.7
KDF 0.2512 0.1858 5.7
RF 0.2314 0.1563 6.8
SKDB 0.2418 0.1706 13.7
ESKDBM 0.2252 0.1565 25
XGBoosttuned 0.2179 0.1496 60
ESKDBHDP 0.2227 0.1536 190

result given the amount of engineering that went into that classifier. However, like
RF, ESKDB scales linearly with the ensemble size (10 used here).

4.9 Discussion

Experimental results show that ESKDB clearly outperforms all existing BNC algo-
rithms (including ensembles such as KDF) both in terms of accuracy, probability
calibration and functionally, as being able to handle numerical attributes. We then
show that ESKDB obtains better-calibrated probabilities than Random Forest, which
is critical for situations where the confidence in the predictions is important. We fin-
ish by showing that ESKDB performs competitively to XGBoost, depending on how
much time is used to tune XGBoost’s hyper-parameters.

Our ESKDB algorithm can be used either with simple Laplace-type smoothing
(such as Laplace and M-estimation) or with our improved HDP estimator. This
choice mostly trades off running time vs quality of the estimates: ESKDBHDP runs
approximately 8x slower than ESKDBM but is able to have significantly better RMSE
than an untuned XGBoost. It is also important here to underline that both versions
of ESKDB can run without having to load the whole dataset in memory, in contrast
to RF and XGBoost.

5 Conclusion and Future Work

This paper introduced ESKDB: a novel ensemble method for Bayesian Network clas-
sifiers that can deal with both categorical and numerical features. ESKDB combines
two sources of stochasticity to modify SKDB to build diverse ensembles. Our abla-
tion study clearly demonstrates that both sources of stochasticity are important to
ESKDB and that ensembling alone produces better class probability estimates than
existing BNCs both on RMSE and on error rate using M-estimation for smoothing.
We also show that using our improved HDP smoothing gives an important gain to
ESKDB with a cost of computational complexity compared with M-estimation.

We believe this work calls for interesting studies in how BNCs, with their inter-
esting functional properties, could be further improved. We saw that an ensemble of

ESKDB Algorithm 23

size 10 was sufficient to obtain most of the gains from ESKDB. Although this is a
good property for running time, it seems to suggest that more work in diversifying
the base classifiers could provide important gains in prediction. We will consider
three directions to this aim: discretizing the attributes depending on the level of the
trees, having SKDB be less conservative in the choice of maxK, and varying the level
of smoothing (which tends to make trees more similar to each other. Another avenue
for research is algorithm optimization to reduce training and testing time.

References

Bostrom H (2007) Estimating class probabilities in random forests. In: Machine
Learning and Applications, 2007. ICMLA 2007. Sixth International Conference
on, IEEE, pp 211–216

Breiman L (1996) Bagging predictors. Machine learning 24(2):123–140
Breiman L (2001) Random forests. Machine Learning 45(1):5–32
Buntine W (1991) Theory refinement of Bayesian networks. In: Seventh Conference

on Uncertainty in Artificial Intelligence, Anaheim, CA
Buntine W (1993) Learning classification trees. In: Artificial Intelligence frontiers in

statistics, Springer US, pp 182–201
Buntine W, Mishra S (2014) Experiments with non-parametric topic models. In:

Proc. of the 20th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pp 881–890

Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system. In: Proceed-
ings of the 22nd ACM SigKDD International Conference on Knowledge Discovery
and Data Mining, ACM, pp 785–794

Chipman HA, George EI, McCulloch RE (1998) Bayesian CART model search. Jour-
nal of the American Statistical Association 93(443):935–948

Chow C, Liu C (1968) Approximating discrete probability distributions with depen-
dence trees. IEEE transactions on Information Theory 14(3):462–467

Dash D, Cooper GF (2004) Model averaging for prediction with discrete Bayesian
networks. Journal of Machine Learning Research 5(Sep):1177–1203

Du L (2011) Non-parametric Bayesian methods for structured topic models. PhD
thesis, Australian National University

Duan Z, Wang L (2017) K-dependence Bayesian classifier ensemble. Entropy
19(12):651

Fayyad U, Irani K (1993) Multi-interval discretization of continuous-valued at-
tributes for classification learning

Freund Y, Schapire RE (1995) A decision-theoretic generalization of on-line learning
and an application to boosting. In: European conference on computational learning
theory, Springer, pp 23–37

Friedman J, Hastie T, Tibshirani R, et al (2000) Additive logistic regression: a sta-
tistical view of boosting (with discussion and a rejoinder by the authors). The
Annals of Statistics 28(2):337–407

Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network classifiers. Machine
learning 29(2-3):131–163

Hearst MA (1998) Support vector machines. IEEE Intelligent Systems 13(4):18–28

24 He Zhang et al.

Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model averaging:
a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a
rejoinder by the authors). Statistical Science 14(4):382–417

Koivisto M, Sood K (2004) Exact Bayesian structure discovery in Bayesian networks.
Journal of Machine Learning Research 5(May):549–573

Lewis DD (1998) Naive Bayes at forty: The independence assumption in information
retrieval, Springer, pp 4–15

Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.
edu/ml

Madigan D, York J, Allard D (1995) Bayesian graphical models for discrete data.
International Statistical Review/Revue Internationale de Statistique pp 215–232

Martınez AM, Webb GI, Chen S, Zaidi NA (2016) Scalable learning of Bayesian
network classifiers. Journal of Machine Learning Research 17(44):1–35

Petitjean F, Buntine W, Webb GI, Zaidi N (2018) Accurate parameter estimation
for Bayesian network classifiers using hierarchical Dirichlet processes. Machine
Learning 107(8):1303–1331

Provost F, Domingos P (2003) Tree induction for probability-based ranking. Machine
learning 52(3):199–215

Sahami M (1996) Learning limited dependence Bayesian classifiers. In: KDD, vol 96,
pp 335–338

Shareghi E, Haffari G, Cohn T (2017) Compressed nonparametric language mod-
elling. In: Proc. of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, pp 2701–2707

Teh YW, Jordan MI (2010) Hierarchical Bayesian nonparametric models with ap-
plications. Bayesian Nonparametrics 1

Tian J, He R, Ram L (2010) Bayesian model averaging using the k-best Bayesian net-
work structures. In: Proceedings of the Twenty-Sixth Conference on Uncertainty
in Artificial Intelligence, AUAI Press, UAI’10, pp 589–597

Webb GI, Boughton JR, Wang Z (2005) Not so naive Bayes: Aggregating one-
dependence estimators. Machine Learning 58(1):5–24

Zadrozny B, Elkan C (2001) Obtaining calibrated probability estimates from decision
trees and naive Bayesian classifiers. In: ICML, Citeseer, vol 1, pp 609–616

Zhou ZH (2012) Ensemble Methods: Foundations and Algorithms, 1st edn. Chapman
& Hall/CRC

Zhou ZH (2015) Ensemble learning. Encyclopedia of biometrics pp 411–416

Author Biographies

He Zhang is currently a PhD candidate in machine learning
at Monash University, Australia. After receiving her masters’
degree in data mining from China in 2015, she moved to Aus-
tralia to begin her PhD study under the supervision of Prof.
Wray Buntine and Dr François Petitjean. She has extensive re-
search interests in machine learning and data mining, including
classification, probability smoothing, ensemble learning, Posi-
tive Unlabelled learning and Cost-sensitive learning. She is also
interested in research in interdisciplinary fields such as bioin-
formatics.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

ESKDB Algorithm 25

François Petitjean is a Senior Researcher (tenure) at Monash
University in Melbourne, Australia. He moved to Australia in
2012 after finishing his PhD with the French Space Agency
(CNES), for which he received several awards. He currently
leads a team of 7 PhD candidates and 3 postdocs working in
time series analysis, Earth observation and graphical models.
He has published 50+ papers, received multiple ’Best paper’
awards, and is the fortunate recipient of the prestigious DE-
CRA fellowship funded by the Australian Government.

Wray Buntine is a full professor at Monash University in Febru-
ary 2014 after 7 years at NICTA in Canberra Australia. He
was previously at Helsinki Institute for Information Technology
where he ran a semantic search project, NASA Ames Research
Center, University of California, Berkeley, and Google. In the
’90s he was involved in a string of startups in Silicon Valley. He
is known for his theoretical and applied work and in probabilis-
tic methods for document and text analysis, social networks,
data mining and machine learning. He has over 150 academic
publications, several software products and two patents from
his Silicon Valley days.

	Introduction
	Related Work and Background
	ESKDB: an ensemble of BN classifiers
	Experiments
	Conclusion and Future Work

