
Hierarchical Gradient Smoothing for Probability
Estimation Trees ?

He Zhang Γ, François Petitjean Γ, and Wray Buntine Γ

Faculty of Information Technology, Monash University, Australia
{he.zhang, francois.petitjean, wray.buntine}@monash.edu

Abstract. Decision trees are still seeing use in online, non-stationary
and embedded contexts, as well as for interpretability. For applications
like ranking and cost-sensitive classification, probability estimation trees
(PETs) are used. These are built using smoothing or calibration tech-
niques. Older smoothing techniques used counts local to a leaf node, but
a few more recent techniques consider the broader context of a node
when doing estimation. We apply a recent advanced smoothing method
called Hierarchical Dirichlet Process (HDP) to PETs, and then propose
a novel hierarchical smoothing approach called Hierarchical Gradient
Smoothing (HGS) as an alternative. HGS smooths leaf nodes up to all
the ancestors, instead of recursively smoothing to the parent used by
HDP. HGS is made faster by efficiently optimizing the Leave-One-Out
Cross-Validation (LOOCV) loss measure using gradient descent, instead
of sampling used in HDP. An extensive set of experiments are conducted
on 143 datasets showing that our HGS estimates are not only more accu-
rate but also do so within a fraction of HDP time. Besides, HGS makes a
single tree almost as good as a Random Forest with 10 trees. For appli-
cations that require more interpretability and efficiency, a single decision
tree plus HGS is more preferred.

Keywords: Probability Estimation Trees · Class Probability Estima-
tion · Hierarchical Probability Smoothing · Hierarchical Dirichlet Pro-
cess.

1 Introduction

Many critical classification tasks require accurate class probability estimates
rather than class labels because probabilities can show people whether the pre-
diction is reliable or not. For instance, the weather forecast not only predicts
rain but also tells people how likely it is. In cost-sensitive learning, the misclas-
sification cost could be significantly reduced if more accurate class probability
estimates could be obtained [4].

More recently, with the advent of many more learning tasks, such as on-
line learning, or learning where the inference system have low computational

? This research was partially supported by the Australian Research Council’s Discov-
ery Projects funding schemes (projects DP190100017 and DE170100037).

https://orcid.org/0000-0001-9851-9414
https://orcid.org/0000-0001-5334-3574
https://orcid.org/0000-0001-9292-1015

2 He. et al.

resources, a single decision tree is seeing a resurgence. Extremely fast decision
trees are one of the top performers for high-data-throughput contexts [11]. Ran-
dom forests and gradient boosted trees have relatively high computational de-
mands in inference, and thus may not be suitable for wearable or embedded
IOT (Internet of Things) applications. So, the problem of making a single tree
perform well in inference arises, and one can ask does a single decision tree beat
a random forest with 10 trees. Moreover, trees also serve as one of the few global
models considered to be interpretable, an increasingly important requirement in
applications [12]. Thus, quality single decision tree built efficiently have many
uses.

Probability Estimation Tree (PET) is a generalization of a single decision
tree by taking the observed frequencies at a leaf node as the class probability
estimates for any test examples that fall into this leaf. However, this method may
lead to unreliable estimates when the number of training examples associated
in a leaf is small [21]. Simple probability smoothing techniques, such as Laplace
smoothing and M-estimation, have long been used to improve PETs’ class prob-
ability estimates by making the estimates at leaves less extreme. However, they
ignore the broader context of any leaf node, especially crucial in cases where the
datasets are imbalanced.

Hierarchical smoothing has gained attention in the community in recent
years. It assumes that the class probability of the leaf node depends on the prob-
abilities of its parents in some hierarchy. To our knowledge, M-branch smoothing
[5] is the first and only one hierarchical method for PETs. It smooths the leaf
node to its direct parent using M-estimation, with the parent also been smoothed
recursively until the root node reached. The results demonstrate that M-branch
performs better than M-estimation. Hierarchical Dirichlet Process (HDP) [13]
can also be used to smooth the probability at the leaves with its parent, par-
tially mimicking what is done in M-branch, but it uses fully Bayesian inference.
A decision tree can be turned into a HDP model tree with each node in the tree
associated with a Dirichlet Process (DP). Similar HDP smoothing methods allow
Bayesian network classifiers [13] and language models [17] to get state-of-the-art
probability estimates but has not been applied to decision trees.

[14] believe that a thorough study of what are the best smoothing meth-
ods for PETs would be a successful contribution to machine learning research,
which is also the main aim of this research. We first show that HDP can help
PETs get better estimates compared with M-estimation. However, HDP is com-
putationally intensive. A novel, more efficient hierarchical smoothing method
called Hierarchical Gradient Smoothing (HGS) is proposed. Unlike HDP and
M-branch, HGS smooths the leaf node to all the ancestor nodes at once, where
each ancestor has a weight parameter to control the smoothness. We propose
Leave-One-Out Cross-Validation (LOOCV) cost to PETs and conduct a gradi-
ent descent algorithm [16] on the cost to automatically obtain the parameters.
One time smoothing and gradient descent make HGS more efficient than recur-
sive smoothing and sampling. A single PET With HGS makes more than 90/143

HGS Algorithm 3

UCI datasets obtain the best probability estimates. Besides, HGS makes single
tree superior to Random Forest with 7 trees and almost as good with 10 trees.

The remainder of this paper is organized as follows. The related works are
reviewed in Section 2. M-branch and HDP are also introduced in this section.
The HGS model is developed in Section 3. An extensive experiment results are
reported in Section 4.

2 Related work

There are some empirical studies [10,23] of improving the class probability esti-
mation of PETs, covering different tree learning algorithms, probability smooth-
ing techniques and tree ensembles, among which we focus more on probability
smoothing techniques.

C4.5, as a traditional decision tree learning algorithm[15], cannot produce
accurate class probability estimates because it aims at building small trees with
accurate class label predictions rather than accurate class probability estimates.
Tree pruning technique is used in C4.5 to achieve this goal by removing the nodes
and branches at the bottom of the tree that fitted to noise data. The pruned tree
is more accurate on classification but less accurate on class probability estimation
[22]. C4.4 is a variant of C4.5 with better class probability estimates by turning
off pruning and applying Laplace smoothing method to leaf nodes [14].

Laplace and M-estimation as the two most simple smoothing methods have
long been used on PETs [14,22] and cost-sensitive learning [20]. Although more
sophisticated smoothing methods such as Kneser-Ney [8] and Modified Kneser-
Ney [2] have been used in language modelling for a long time, M-branch was the
first hierarchical smoothing method for decision trees proposed in 2003 [6]. A
recent smoothing method called Hierarchical Dirichlet Process (HDP) has had
great success on language modelling [17] and Bayesian Network Classifiers [13],
whereas it has not been used on decision trees. The following part introduces
these methods in detail.

M-estimation smoothing M-estimation is more recommended by [22] for
class-imbalanced data, which is defined as

θ̂M−estik =
nk +M × b
n· +M

(1)

where the base rate b is the expected probability without any additional knowl-
edge, and it is usually considered uniform, i.e. b = 1

K . M is a parameter that
controls how much scores are shifted towards the base rate. When m = K and
b = 1

K , it becomes Laplace smoothing.
M-branch Smoothing M-branch is the first hierarchical smoothing method

for PETs [5]. It considers each node in the tree is a subsample of the upper parent.
This means that the sample used to obtain the probability estimates in a leaf
is the result of many sampling steps, as many as the depth of the leaf. Then
it is natural to consider all the history of samples when trying to obtain the
probability estimates of a leaf.

4 He. et al.

Let < v1, v2, ..., vl−1, vl > represents all the nodes on the branch that contains
the leaf node vl, where vl−1 is the parent of vl and v1 is the root. The class
probability estimate for class k at node vl is smoothed by M-estimation in the
following way

θ̂Mbranch
l,k =

nl,k +ml × θ̂Mbranch
l−1,k

nl,. +ml
(2)

where nl,k denote the observed count of class k and nl,. is the total. The base

rate b for M-estimation is the parent estimate θ̂Mbranch
l−1,k , which also needs to be

smoothed to the parent node at a higher level vl−2. Repeat these steps recur-
sively until the root node v1 reached. The root node is smoothed to a uniform
probability θ̂0,k = 1

K . The m parameter for each node has been defined as a
function of the node height in the tree. Please refer to [5] for more detail.

HDP Smoothing Unlike M-branch, HDP assumes that only leaf nodes have
data and all the parent nodes are empty, instead of inheriting data from their
children during the inference process. Each leaf passes some subset of its data
to its parent, selected during the inference process. The subset passes higher
and higher, thinning recursively until the root is reached. Suppose tu,k is the
subset of data nu,k that node u passes up to its parent φ, the data for node φ
is collected from all the children so that nφ,k =

∑
u∈φ tu,k where u ∈ φ means

u is the child of φ. The concentration cφ controls how much data passes up to

node φ, i.e. tu,k. If we expect θ̂u,k to be very similar to θ̂φ,k, then choose a bigger
cφ that makes most of the data pass up, and the parent probability contribute
more to the estimate. If cφ is small, the parent probability contributes less to
the estimate. The smoothing formula for node u and class k is defined as follows

θ̂HDPu,k =
nu,k + cφ × θ̂HDPφ,k

nu,. + cφ
(3)

Here θ̂HDPφ,k is the parent estimate which also needs to be smoothed. The class
probabilities are calculated from the root to the leaves. Thus, when reaches the
leaves, the probability estimates are already properly smoothed. Equ. 3 can also
be explained by the Hierarchical Chinese Restaurant Process (CRP) [19]. Please
refer to [13] for more detail of HDP smoothing on Bayesian Network Classifiers.

Gibbs sampling is used in HDP to sample the concentration parameters.
iteration is the number of iterations of Gibbs sampling. tying is used to tie some
nodes together to share a single concentration in order to reduce the number of
parameters. There are four types of tying. SINGLE means tying all the nodes
together to share a single concentration parameter. LEV EL means the nodes
on the same depth are tied together. PARENT means tying the sibling nodes
under one parent. NONE means no tying.

3 HGS Algorithm

In this section, we propose a novel efficient hierarchical probability smoothing
method for PETs called Hierarchical Gradient Smoothing (HGS). Like all other

HGS Algorithm 5

hierarchical smoothing methods, HGS considers that the class probability esti-
mate of a leaf node is related to the probability estimates of all parent nodes on
the branch that contains the leaf.

3.1 The Hierarchical Computation

HGS is different from HDP and M-branch. Figure 1 can more intuitively express
the differences between them. It can be seen from this figure that HDP and M-
branch both smooth the leaf node to an upper parent node, then the parent node
also needs to be smoothed to a higher node until the root node is reached. Each
node has a concentration parameter to control the smoothness, which is c for
HDP and m for M-branch. However, unlike HDP and M-branch smoothing, HGS
smooths the class probability estimate on a leaf node to all ancestor nodes on
the branch at one time, instead of only to the nearest parent node recursively.
Each parent node has a weight parameter α to control the degree to which
the probability estimates are backed off to the parent. The one-time smoothing
makes HGS faster than HDP and M-branch and also allows global optimization
of hyper-parameters.

1

2 3

4 5 6 7

c2

α1

α3

c1

m2

m1

HGS
HDP

M‐branch

Fig. 1: The difference between HGS, HDP, and M-branch. HGS is represented
by red, HDP and M-branch by blue and green, respectively.

The probability smoothing formula for leaf l and class k using HGS is as
follows,

θ̂HGSl,k =
nl,k +

∑
p∈anc(l) αpθ̂p,k

nl,· +
∑
p∈anc(l) αp

, (4)

where anc(l) represents all the ancestor nodes on the branch that containing the
leaf node l. Each ancestor node p ∈ anc(l) has a weight parameter αp controls
the degree of smoothness. The probability estimate of p is calculated by the
Maximum Likelihood Estimation (MLE), which is defined as θ̂p,k =

np,k

np,·
. The

term
∑
p∈anc(l) αpθ̂p,k is the weighted combined probability of all the ancestors.

The term
∑
p∈anc(l) αp is the sum of the weights.

3.2 Working with LOOCV

Let α denote the vector that contains all the weight parameter αs with the size
being the number of internal nodes in the tree. How can one set the α properly,
for instance, how should it be optimized?

6 He. et al.

Before going into the details of how to set α, it is worth briefly introducing
LOOCV and incremental LOOCV. LOOCV is a special case of k fold cross-
validation, where k equals to the number of training examples N . In each fold
of the cross-validation, an example is treated as a test example while the others
are the training examples. LOOCV could be sped up using incremental LOOCV
[9,7]. The idea is instead of training a model during each fold of the cross-
validation, first, train a model on the full dataset, then delete the one example
that is left out, test on that example, then insert it into the model again. This
delete-test-insert phase is repeated for each of the N folds. Incremental LOOCV
can be conducted on any algorithm that supports incremental learning, allow-
ing for dynamically adding or removing examples from the model. Decision tree
learning is such an algorithm. Note incremental LOOCV means the model struc-
ture remains unchanged.

If one looks at a cross-validation in LOOCV, a test example at leaf l with
true class k should be left out from the tree, which means the data count of
both l and anc(l) should be reduced by 1. The total count becomes nl,.−1. This
Leave-One-Out (LOO) probability estimate for this test with class k becomes

θLOOl,k =
nl,k − 1 +

∑
p∈anc(l) αpθ

LOO
p,k

nl,· − 1 +
∑
p∈anc(l) αp

(5)

Here θLOOp,k =
np,k−1
np,·−1 . nl,k ≥ 1 must be satisfied so that there is at least one

example to moved out. For other classes c ∈ K, c 6= k, the probability estimate
is formed without subtracting one in the renumerator.

If one performs an incremental LOOCV on the tree, the examples in every
leaf l ∈ L with every class k ∈ K need to be left out once. The LOOCV measure
using log loss of all the examples in the tree becomes

LOOCV (α) =
1

N

∑
l∈L

∑
k∈K

nl,k · log

(
1

θLOOl,k

)
(6)

and note we have also tested a squared error loss (1 − θLOOl,k)2 yielding similar
results. For more information about loss functions please refer to [18]

Now a Gradient Descent algorithm [16] can be performed on the LOOCV (α)
cost to optimize the parameters α. The gradient of each αp is

∂

∂αp
LOOCV (α) =

1

N ln 2

∑
l∈des(p)

∑
k∈K

βl,k (7)

where βl,k is referred to

βl,k =
nl,k ·

(
θLOOl,k − θLOOp,k

)
(
nl,. − 1 +

∑
p∈anc(l) αp

)
· θLOOl,k

(8)

Here des(p) represents the descendent leaves under p.

HGS Algorithm 7

3.3 Algorithm Description

The HGS algorithm HGS(T , b, v) takes a decision tree T , a learning rate b and
a precision parameter ε as inputs, and a HGS smoothed tree as output. It has
three steps in total. First, initialize α to be the vector of parameters with the
length to be the number of internal nodes and all the values to be 1. Second,
conduct a standard gradient descent algorithm to get the optimized parameters
α. Last, traverse the tree top-down in level-order to calculate the HGS smoothed
probability estimates θ̂HGSl,k for all the leaves. The top-down traverse method used
here is the same as the first tree top-down traverse method in Algorithm 2 (line
1–9), except that the probability estimates are calculated using Equ. 4 in line 8.

The second step in the HGS algorithm uses a standard gradient descent al-
gorithm to optimize the parameters, as shown in Algorithm 1. Gradient descent
needs many iterations to reduce the cost until the cost difference between two
iterations is less than a given ε. Algorithm 2 is called in every iteration to cal-
culate the cost and gradients by going through the tree twice. First, traverse
the tree top-down to calculate the LOO estimate θLOOp,k using Equ. 5 and the

cost LOOCV (α) using Equ. 6 (line 1–9). α∗p =
∑
i αi and θ∗p,k =

∑
i αiθ

LOO
i,k .

Second, traverse the tree bottom-up to calculate the gradients for each internal
node level by level (line 10–16). Last, return the cost.

The complexity of HGS smoothing on a PET is O(I · S ·K), where S is the
total number of nodes and K is the number of classes. We call I the number of
iterations for gradient descent. In practice, we use the standard stopping crite-
rion corresponding to an improvement of less than ε. Each iteration of gradient
descent has a complexity that is linear to the size of the tree S (total number of
nodes).

Algorithm 1: gradientDescent(T ,α, b, ε)
Input : a decision tree T , an initialized vector α, a learning rate b, a

learning rate b
Output: an optimized vector α

1 costDiff = Double.max;
2 while costDiff > ε do
3 cost← calculateGradientsAndCost(T ,α);
4 for each node p ∈ T and p /∈ L do
5 // internal nodes

6 αp := αp − b ∂
∂αp

LOOCV (α);

7 cost
′
← calculateGradientsAndCost(T ,α) ;

8 costDiff ← cost− cost
′
;

9 return α

4 Experiments

The aim of this section is to show the performance of HGS smoothing com-
pared with other existing smoothing methods for C4.5 trees. Section 4.1 gives

8 He. et al.

Algorithm 2: calculateGradientsAndCost(T ,α)

Input : a tree T with depth d and leaves L
Input : a vector α
Output: cost

1 /* Traverse 1: Calculate cost top-down. */

2 cost← 0;
3 for h← 0 to d do
4 for each node p in level h and each class k ∈ K do
5 if p /∈ L then
6 calculate θLOOp,k , αpθ

LOO
p,k , α∗

p and θ∗p,k;
7 else
8 calculate θLOOl,k using Equ. 5;
9 cost← cost+ nl,k · log 1

θLOO
l,k

;

10 /* Traverse 2: update gradients bottom-up. */

11 for h← d to 0 do
12 for each node p in level h and each class k ∈ K do
13 if p /∈ L then
14 Calculate ∂

∂αp
LOOCV (α) using Equ. 7;

15 else
16 Calculate βl,k using Equ. 8;

17 return cost← 1
N·In2 · cost

the general experimental settings. The remaining sections then detail individual
experiments.

4.1 Experiment Design and Setting

Design An extensive set of experiments are conducted on 143 standard datasets
from the UCI archive [3], where 20 have more than 10,000 instances, 52 have
between 1,000 and 10,000, and 71 have less than 1,000 instances. A missing value
is treated as a separate attribute value. The datasets and the table that sum-
marizes the characteristics of each dataset, including the number of instances,
attributes and classes, can be found and downloaded from Github 1.

Evaluation Measure The results are assessed by RMSE and 0-1 Loss. RMSE
is the most important measure because it measures how well-calibrated the
probability estimates are, and these better support tasks with unequal costs
or imbalanced classes. 0-1 Loss refers to classification accuracy. For both RMSE
and 0-1 Loss, the smaller, the better. Win-Draw-Loss (WDL) is reported when
comparing two methods. A two-tail binomial sign test is used to determine the
significance of the results. A difference is considered to be significant if p ≤ 0.05.

Software To ensure reproducibility of our work and allow other researchers to
build on our research easily, we have made our source code for HGS smoothing
on PETs available on Github 1.

Compared methods Different smoothing methods are compared for the C4.4
decision tree (C4.5 without pruning), including Laplace smoothing, M-estimation,

1 https://github.com/icesky0125/DecisionTreeSmoothing

https://github.com/icesky0125/dataset-and-raw-results-for-HGS-paper
https://github.com/icesky0125/DecisionTreeSmoothing

HGS Algorithm 9

M-branch, HDP and HGS. The parameters of HDP are set to be iteration =
1, 000 and tying = SINGLE, which are tested by us. All the methods are
evaluated using 10-fold cross-validation.

4.2 HGS Parameter Tuning

HGS is basically a parameterless algorithm. The only two parameters are the
learning rate b and the minimum cost difference threshold ε between two itera-
tions needed in the gradient descent algorithm [16]. In this experiment, we tried
different values b = 0.01, 0.001 and ε = 0.001, 0.0001 and found that their results
were all the same with only slight differences in training time. Based on these
results, in the following experiment we choose standard values of b = 0.01 and
ε = 0.0001.

4.3 HGS vs. Existing Methods

This experiment evaluates the advantages of HGS compared with single-layer
smoothing methods, including MLE, Laplace correction and M-estimation, and
hierarchical smoothing methods, including M-branch and HDP. Table 1 and
Table 2 are the table of WDL and the averaged value respectively. The error
bars of all these models are 0.012 on RMSE and 0.015 on 0-1 Loss, respectively.
It can be seen from these tables that HGS is significantly better than all of the
existing methods on RMSE and better on 0/1 Loss.

The training time for HGS, as a hierarchical smoothing method, is similar
to single-level methods, which is 1.1 seconds. While compared with the existing
hierarchical methods, HGS is approximately 5 times faster than HDP and 9
times faster than M-branch on average. This indicates that HGS makes PET get
both very accurate probability estimates and classification results efficiently.

Table 1: Win-Draw-Loss results (The
boldface values are significant).

Method RMSE 0-1 Loss

HGS vs. MLE 108-2-33 69-22-52

HGS vs. Laplace 111-4-28 68-22-53

HGS vs. M-esti 98-4-41 66-23-54

HGS vs. M-branch 96-3-44 59-32-52

HGS vs. HDP 92-1-50 64-21-58

Table 2: Averaged results

Methods RMSE 0-1 Loss Runtime

MLE 0.2596 0.2093 1.1

Laplace 0.2499 0.2093 1.1

M-estimation 0.2485 0.2068 1.1

HDP 0.2436 0.2078 4.9

M-branch 0.2428 0.2062 9.3

HGS 0.2410 0.2059 1.1

To compare the three hierarchical smoothing methods more intuitively, we
take the RMSE of HGS as the benchmark for each dataset and subtract RMSE
of M-branch and HDP, and drew Figure 2. The X-axis represents the datasets
arranged from large to small in terms of data size. The Y-axis represents the
RMSE difference between HGS and each method, which is the lower, the better.
The points in the grey area represent the datasets that perform better with HGS.
The lower the point is, the stronger the advantage of HGS is. The following

10 He. et al.

conclusions can be drawn. First, there are more points in the grey area, which
indicates that HGS makes the majority of the datasets with better estimates.
Second, the ∗ points are mostly centred around the line y = 0, while o points
are more diffuse than ∗. This means HDP has high variance compared with M-
branch. Last, among the top 20 largest datasets with more than 10,000 examples
on the far left of the figure, HDP makes 14 out of them performs better than
HGS and M-branch. This indicates that HDP is more helpful on large datasets.

0 20 40 60 80 100 120 140
Dataset

0

0.1

R
M

S
E

 D
iff

er
en

ce

HGS - M-branch
HGS - HDP

In this area HGS is better

 Large data ---------------------------------> Small data

Fig. 2: Compare the probability esti-
mates of HGS with HDP and M-branch.

2 2.5 3 3.5 4 4.5 5 5.5
Log Data Size

-1

0

1

2

3

4

5

6

Lo
g

R
un

ni
ng

 T
im

e

HGS
HDP

Fig. 3: Training time comparison accord-
ing to log data size.

4.4 Running Time vs. Data Size

One of the most important motivations of HGS is its efficiency, i.e. running time.
Table 1 only gives the averaged running time over all the datasets. Here it is also
interesting to investigate the running times based on different data size. Figure 3
is the running time versus data sizes plot for HGS and HDP evaluated on all the
datasets. We take the log of both the data sizes and the running times to make
the figure more intuitive. It is evident that the blue ∗ are almost always lower
than the red circles, which indicates that the training time of HGS on datasets
of different sizes is basically shorter than that of HDP.

4.5 HGS on Random Forest

We sought to determine how many trees are needed in RF to beat HGS on a
single tree, and the impact of smoothing with RF. Previously, [1] suggested that
a non-corrected probability estimate should be used in RF. Figure 4 shows the
RMSE changing with the forest size. RF HGS represents random forest using
HGS smoothing, while RF means no smoothing. C4.5 with HGS smoothing is
represented by line y = 0.24. This figure shows that HGS makes RF worse after
three trees because smoothing can reduce the diversity of RF. A single C4.5 tree
using HGS yields RMSE better or close to RF with 7 trees and comparatively
for 10 trees. While single trees with HGS smoothing cannot beat RF, a single
tree is preferred if one is more interested in interpretability.

HGS Algorithm 11

1 2 3 4 5 6 7 8 9 10 20 50
Forest Size

0.2

0.22

0.24
0.25

0.3

0.35

R
M

S
E

RF
RF_HGS
C4.5_HGS

Fig. 4: HGS Smoothing on Random Forest in RMSE.

4.6 Conclusions

It is well known that probability smoothing beats pruning, and M-branch showed
us that hierarchical smoothing could further improve performance. This paper,
however, develops a new hierarchical algorithm, HGS, and tests out a recent
algorithm, HDP smoothing on trees for the first time. The originality of HGS is
in removing recursive smoothing and efficient pre-computation of key statistics,
which also allow better optimization of hyper-parameters. This experimental
evaluation demonstrates three significant contributions.

– HDP smoothing developed in [13] is shown to be comparable to M-branch,
and evidence suggests it is the superior algorithm for large data sets.

– HGS is an order of magnitude faster than M-branch and HDP smoothing,
and significantly better in RMSE.

– HGS is generally superior to a random forest with 7 trees and almost as
good with 10 trees, which makes HGS a single tree alternative to a random
forest with 10 trees or less.

There has been a renewed interest in decision trees, and thus also PETS. For
applications that require more interpretability and efficiency, such as online and
embedded applications, a PET built using a single decision tree plus HGS is thus
suitable for these.

References

1. Bostrom, H.: Estimating class probabilities in random forests. In: Machine Learning
and Applications, 2007. ICMLA 2007. Sixth International Conference on. pp. 211–
216. IEEE (2007)

2. Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for language
modeling. Computer Speech & Language 13(4), 359–394 (1999)

3. Dua, D., Graff, C.: UCI machine learning repository (2017)
4. Elkan, C.: The foundations of cost-sensitive learning. In: International Joint Con-

ference on Artificial Intelligence. vol. 17, pp. 973–978. Lawrence Erlbaum Asso-
ciates Ltd (2001)

12 He. et al.

5. Ferri, C., Flach, P., Hernández-Orallo, J.: Decision trees for ranking: effect of new
smoothing methods, new splitting criteria and simple pruning methods. Technical
report, DSIC 2003 (2003)

6. Ferri, C., Flach, P.A., Hernández-Orallo, J.: Improving the AUC of probabilis-
tic estimation trees. In: European Conference on Machine Learning. pp. 121–132.
Springer (2003)

7. Joulani, P., Gyorgy, A., Szepesvári, C.: Fast cross-validation for incremental learn-
ing. In: Twenty-Fourth International Joint Conference on Artificial Intelligence
(2015)

8. Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling. In:
ICASSP. vol. 1, p. 181e4 (1995)

9. Kohavi, R.: The power of decision tables. In: European Conference on Machine
Learning. pp. 174–189. Springer (1995)

10. Liang, H., Zhang, H., Yan, Y.: Decision trees for probability estimation: An em-
pirical study. In: 2006 18th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI’06). pp. 756–764. IEEE (2006)

11. Manapragada, C., Webb, G.I., Salehi, M.: Extremely fast decision tree. In: Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. pp. 1953–1962. KDD ’18, ACM, New York, USA (2018)

12. Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B.: Definitions, meth-
ods, and applications in interpretable machine learning 116(44), 22071–22080
(2019)

13. Petitjean, F., Buntine, W., Webb, G.I., Zaidi, N.: Accurate parameter estima-
tion for Bayesian network classifiers using hierarchical Dirichlet processes. Machine
Learning (May 2018)

14. Provost, F., Domingos, P.: Tree induction for probability-based ranking. Machine
Learning 52(3), 199–215 (2003)

15. Quinlan, J.R.: C4.5: Programs for machine learning. The Morgan Kaufmann Series
in Machine Learning, San Mateo, CA: Morgan Kaufmann,— c1993 (1993)

16. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747 (2016)

17. Shareghi, E., Haffari, G., Cohn, T.: Compressed nonparametric language mod-
elling. In: Proc. of the Twenty-Sixth International Joint Conference on Artificial
Intelligence. pp. 2701–2707 (2017)

18. Shen, Y.: Loss functions for binary classification and class probability estimation.
Ph.D. thesis, University of Pennsylvania (2005)

19. Teh, Y.W., Jordan, M.I.: Hierarchical Bayesian nonparametric models with appli-
cations. Bayesian Nonparametrics 1 (2010)

20. Wang, T., Qin, Z., Jin, Z., Zhang, S.: Handling over-fitting in test cost-sensitive
decision tree learning by feature selection, smoothing and pruning. Journal of Sys-
tems and Software 83(7), 1137–1147 (2010)

21. Zadrozny, B., Elkan, C.: Learning and making decisions when costs and probabili-
ties are both unknown. In: Proceedings of the seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp. 204–213. ACM (2001)

22. Zadrozny, B., Elkan, C.: Obtaining calibrated probability estimates from decision
trees and naive Bayesian classifiers. In: ICML. vol. 1, pp. 609–616. Citeseer (2001)

23. Zhang, K.: Probability estimation trees: empirical comparison, algorithm extension
and applications. Ph.D. thesis, Tulane University (2006)

	Hierarchical Gradient Smoothing for Probability Estimation Trees

