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Abstract. Computing the probability of unseen documents is a natu-
ral evaluation task in topic modeling. Previous work has addressed this
problem for the well-known Latent Dirichlet Allocation (LDA) model.
However, the same problem for a more general class of topic models,
referred here to as Gamma-Poisson Factor Analysis (GaP-FA), remains
unexplored which hampers a fair comparison between models. Recent
findings on the exact marginal likelihood of GaP-FA enable the deriva-
tion of a closed-form expression. In this paper, we show that its exact
computation grows exponentially with the number of topics and non-
zero words in a document, thus being only solvable for relatively small
models and short documents. Experimentation in various corpus also in-
dicates that existing methods in the literature are unlikely to accurately
estimate this probability. With that in mind, we propose L2R, a left-
to-right sequential sampler that decomposes the document probability
into a product of conditionals and estimates them separately. We then
proceed by confirming that our estimator converges and is unbiased for
both small and large collections.

Keywords: Topic models · Gamma-Poisson · Factor Analysis · Left-to-
right · Importance Sampling · Estimation methods.

1 Introduction

Probabilistic topic models [1] have enabled the thematic exploration of document
collections at a scale which would have been unfeasible for unassisted humans.
Despite the growing interest in these models, there is some disagreement on
the methodologies to evaluate and compare them. Their unsupervised nature
makes it difficult to propose a silver-bullet metric and this has led to a myriad
of application-specific methods for evaluation ranging from document classifica-
tion to word prediction. However, their probabilistic nature also suggests that
computing the likelihood of a collection of held-out documents is a legitimate
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measure of the generalization capabilities of these models, independent of their
final application.

Although previous work [15, 4] has looked at this problem for the well-known
Latent Dirichlet Allocation (LDA) [2], similar studies have not yet been con-
ducted for related models like the Gamma-Poisson (GaP) [5] and Poisson matrix
factorisation (PMF) [7], related forms of non-negative matrix factorisation [9].
GaP, PMF and their extensions, referred here to as GaP Factor Analysis (GaP-
FA), represent a more general and expressive class of models [3] which explicitly
take into account the document length. Because of this, GaP-FA have been
successfully applied in many other domains beyond topic modeling [5, 17]. For
instance, they have been used to include implicit feedback in recommendation
systems [7] or to perform statistical relational learning in sparse networks [16].
Therefore, the intrinsic evaluation of GaP-FA in terms of the likelihood of held-
out data becomes relevant for a much broader domain, even though in this paper
we stick to topic modeling.

Computing the probability of a single document requires integrating out all
document-level latent variables. This marginal distribution has no analytical so-
lution in the original GaP model, but recent progress in the field has enabled the
derivation of a closed-form expression by means of an augmented GaP model [6].
Nonetheless, we will show that the complexity of the exact solution grows ex-
ponentially with the number of topics and the number of non-zero words in the
document. Besides, the exponential base depends on the maximum word count
in the document. This means that the exact marginal is only tractable in reason-
ably small scenarios such as in models with 5 topics, documents with 10 non-zero
words and all words having 1 or 2 counts. Thus, approximation methods to the
marginal document likelihood are extremely necessary for evaluating GaP-FA
under more realistic conditions.

Simple approximation methods, such as Direct Sampling (DS) or the Har-
monic Mean (HM) method [12], are known to output inaccurate estimations, par-
ticularly in high-dimensional setups. Despite that, their ease of implementation
and low computational cost have popularized their use in LDA-like models [8,
14]. As a result of this misuse, there is an urge for more accurate and compu-
tationally efficient estimation methods. One approach which has been reported
to output state-of-the-art results in LDA is the Left-to-right Sequential Sam-
pler [4]. By leveraging the chain rule of probability, the algorithm decomposes
the joint document probability into a product of conditionals, one conditional
per word. Then, unbiased estimates can be built for each conditional given the
posterior samples on the left-hand topics. However, three issues arise in GaP-
FA due to the Gamma-Poisson construction: (1) The posterior distribution over
the left-hand topic assignments is not tractable. (2) The computational cost of
each exact conditional is exponential with the number of topics. (3) The time
complexity grows quadratically with the number of non-zero words.

In this paper, we propose L2R, a left-to-right sequential sampler for GaP-FA
that addresses (1) by means of Gibbs sampling the augmented model, (2) via
Importance Sampling with proposal distributions conditioned to the left-hand
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samples (3) through a mathematical simplification that enables to compute the
conditional probability for all zero words at once. Moreover, we compare the
accuracy of L2R to that of existing estimation methods in two different setups:

– In reasonably sized scenarios, where the exact marginal can be assessed in
moderate time and hence, conclusions about their accuracy can be drawn.

– In realistic scenarios, where the exact marginal and the vanilla left-to-right
are computationally unfeasible and hence, only their convergence can be
under study.

In the rest of this paper, we introduce some preliminary concepts about GaP-
FA in Sec. 2. In Sec. 3, we formulate the problem in terms of computing the
marginal document likelihood. We present an overview of existing estimation
methods in Sec. 4. In Sec. 5, we describe the L2R algorithm. Finally, Sec. 6
contains the experimental work carried out in both scenarios.

2 Background

2.1 Gamma-Poisson Factor Analysis (GaP-FA)

Poisson Factor Analysis (PFA) is a type of discrete component or factor analy-
sis [3] with Poisson likelihoods. This means that PFA assumes that the full count
matrix Y ∈ NN×W0 can be generated from a multivariate Poisson distribution
parametrized through the product of two smaller matrices,

Y ∼ Pois(ΘΦ) (1)

where Θ ∈ RN×K+ is the factor score matrix and Φ ∈ RK×W+ , the factor loading
matrix. K refers to the dimension of the latent factors or topics in topic model-
ing. This method can be augmented with latent factor/topics counts xnwk and
express each count ynw as the sum of the K independent counts,

ynw =

K∑
k=1

xnwk, xnwk ∼ Pois(θnkφkw) (2)

where ynw are the observed word counts of the w-th word in the n-th document,
and xnwk corresponds to the hidden or latent counts in the k-th topic for the
same document and word. θnk and φkw refer to the corresponding row/column
entries in matrices Θ, Φ, respectively.

Several models have been developed from this by placing distinct types of
priors over the factor score or loading matrices [17]. In this work, we restrict
to methods that assume a Gamma distribution for each factor score. We refer
to these models as Gamma-Poisson Factor Analysis (GaP-FA). This group in-
cludes Non-negative Matrix Factorization (NMF) [9], gamma-Poisson (GaP) [5]
and the three hierarchical models Γ -PFA, βΓ -PFA, βγΓ -PFA presented in [17],
among many others. For mathematical convenience, we consider the shape-scale
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parameterization of the Gamma distribution, though results generalize to other
parameterizations,

θi,k ∼ Ga(rk,
pk

1− pk
) k = 1...K (3)

where rk corresponds to the shape and pk
1−pk , to the scale of the k-th factor. To

satisfy the constraints of the Gamma, we must ensure that r > 0 and 0 < p < 1.
Next, we introduce two compound probability distributions that are the re-

sult of assuming that the rate of a univariate and multivariate Poisson distri-
bution is controlled by a Gamma random variable. These distributions will be
useful in deriving marginal and conditional likelihoods for GaP-FA.

2.2 Negative Binomial (NB)

The Negative Binomial (NB) distribution is a discrete distribution for the num-
ber of successes in a sequence of i.i.d Bernoulli trials with probability p after
observing a given number of r failures.

As shown in [17], the NB can be constructed by marginalizing a Poisson
distribution whose rate θ is controlled by a gamma random variable parameter-
ized with shape r and scale p

1−p as above. In other words, we can build a NB
distribution by,

NB(x; r, p) =

∫
Pois(x|θ) Ga(θ; r,

p

1− p
) dθ. (4)

2.3 Negative Multinomial (NM)

The Negative Multinomial (NM) distribution [13] is the multivariate general-
ization of the NB distribution to W outcomes (W > 1), each occurring with
probability qw and for a given number of failures r.

As shown in [6], the NM can be built by marginalizingW independent Poisson
distributions whose rate is controlled by a gamma random variable θ that is
scaled by a vector φ: of length W . This can be expressed mathematically as,

NM(x:; r, q: =
pφ:

1− p+ p
∑
w φw

) =

∫ ∏
w

Pois(xw|θφw) Ga(θ; r,
p

1− p
) dθ (5)

where r are the number of failures and q: = pφ:

1−p+p
∑

w φw
is the vector of W

success probabilities. When φ: is a probability vector, which sums up to 1, the
success probabilities of the NM become q: = pφ:.

3 Problem Statement

A common and reasonable strategy to compute the probability of unseen doc-
uments in topic models is to use point estimates for the set of global param-
eters, instead of a fully Bayesian approach which would marginalize across all
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model [15, 4]. This enables to factorizes the held-out probability across doc-
uments in GaP-FA since documents are conditionally independent given the
global parameters. As a result of this, the problem then comes down to calculat-
ing the marginal document likelihood for each held-out document independently
by integrating out the document-level latent variables. We can express this for
the GaP-FA model in Eq. (1) as,

p(Y ;Φ, p, r) =
∏
n

p(yn:;Φ, p, r) =
∏
n

∫
p(yn:, θn:;Φ, p, r) dθn: (6)

where the first equality expresses that documents yn: are independent given the
set of global parameters Ω = {Φ, p, r}, and the second equality says that this
probability is equal to the product across all marginal document likelihoods.

Next, we focus on deriving a closed-from expression for the marginal docu-
ment likelihood in GaP-FA, p(yn:;Φ, p, r), and show which is the computational
issue that arise in its evaluation. It is important to note that the derivation and
approximation of this marginal in the rest of this paper is equivalent for testing
and training documents, so we will use yn: indistinctly to refer to both.

3.1 Exact Marginal Document Likelihood in GaP-FA

Following [6], the marginal likelihood of the n-th document in GaP-FA can
be written from the augmented model in Eq. (2). Note that we can write the
marginal as the sum of the marginal on xn:: over all possible topic counts, which
must add up to the observed counts yn: in the n-th document. This can be
expressed formally as,

p(yn:;Φ, p, r) =
∑

xn::∈Xyn:

∏
k

p(xn:k; rk, pk, φk:) (7)

where the summation set Xyn: = {xn:: ∈ (N0)W×K | yn: =
∑K
k=1 xn:k}

corresponds to all the possible partitions of the topic counts in the n-th document
into K parts. Factorization across the marginals on the topic counts is due to
independence across these counts, as in Eq. (2).

Then, deriving a closed-form expression for the marginal document likeli-
hood boils down to finding an analytical expression for p(xn:k; rk, pk, φk:). Fol-
lowing [6], this probability can be calculated by marginalizing out θnk in the
augmented model. Moreover, a parametric distribution can be derived by noting
that this marginal matches the NM distribution definition introduced in Eq. (5).
In other words, the marginal distribution on the counts of the k-th topic can be
written as,

p(xn:k;φk:, pk, rk) =

∫ ∏
w

Pois(xnwk|θnkφkw)Ga(θnk; rk,
pk

1− pk
) dθnk

= NM(xn:k; rk, qk: =
pkφk:

1− pk + pk
∑
w φkw

) (8)
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where φk:, pk, rk are topic-dependent and xn:k, θnk document-dependent too.

3.2 On the Time Complexity of the Exact Marginal

Evaluating Eq. (7) means summing the independent marginals on xn:k over all
elements in the set Xyn:

. As shown in Eq. (8), each marginal consists of a NM
distribution which has a cost linear with the number words W in an unoptimized
implementation of NM, or linear with the number of non-zero word counts Wc

when all zero words are evaluated together. Therefore, the cost of each summand
is linear with both the number of topics K and the number of non-zeros Wc,
since K marginals need to be computed for each summand.

The number of sums in Eq. (7) equals the cardinality of the set |Xyn:
|. As

shown in [6], the cardinality is given by the product of the partitions in each
word w. The latter consist in the number of partitions of a natural number, i.e.
ynw, into K parts, which is the combinatorial term of selecting K − 1 objects
from a collection of ynw +K − 1. Therefore, the overall number of partitions for
document n is

∏
{w|ynw 6=0}

(
ynw+K−1
K−1

)
, where {w|ynw 6= 0} corresponds to the

Wc non-zeros.
In the limit, one can show that this set grows exponentially with both the

number of topics and the number of non-zeros O((ynmax)
KWc). We note that the

base of the exponent is the maximum word count in the n-th document ynmax.
Therefore, the cost of summing over the set |Xyn:

| dominates the complexity of
evaluating the exact marginal document likelihood.

As a result, the exact evaluation of the marginal document likelihood for
GaP-FA is only tractable for reasonably small problems, such as in models with
5 topics, documents with 10 non-zero words and all words having 1 or 2 counts.
However, the existence of this closed-from expression motivates the development
of tailored estimation methods and to calibrate their outputs with the exact.

4 Related Work

Wallach et al. [15] presented several estimation methods for evaluating LDA in
terms of held-out likelihood. Buntine [4] also compared the performance of these
methods against the exact calculation for the same LDA model. The conclusion
of both studies was that simple and commonly-used estimation methods fail
to accurately estimate the document likelihood, specially in high-dimensional
scenarios. But Wallach’s Left-to-right algorithm was modified to a Sequential
Sampler scheme and proven to be unbiased by Buntine. Given the quick con-
vergences and unbiasedness properties of the Left-to-right Sequential Sampler,
it can now be used as a gold standard for estimation in LDA with large number
of samples.

To the best of our knowledge, no prior work exists for document likelihood
estimation in GaP-FA. However, it comes natural to wonder whether LDA meth-
ods can be directly applied in GaP-FA. As we have seen previously, the Gamma-
Poisson construction differs from that of LDA and the time complexity of its
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marginal document likelihood is far more complex. The number of sums in LDA
grows exponentially with the document length. Therefore, existing estimation
methods [15, 4] for LDA have to be amended accordingly. Next, we discuss the
amendments and limitations imposed by GaP-FA.

In contrast to LDA, the Direct Sampling (DS) or Importance Sampling with
the prior as proposal cannot be formulated over the discrete variables of the
augmented model xn::, because the observed counts yn: follow a deterministic
relationship with the topic counts xn::. Therefore, DS has to be formulated over
the continuous variables θn: as the Monte Carlo sampling of Eq. (6),

p(yn:;Φ, p, r) ≈
1

S

S∑
s=1

p(yn:|θ(s)n: ;Φ, p, r)← θ(s)n: ∼ p(θn:; p, r). (9)

where the likelihood p(yn:|θn,:;Φ, p, r) is W -variate Poisson with rates given by
the vector θn:Φ and p(θn:; p, r) is given by Eq. (3) for each topic k < K. Although
this estimator is unbiased, the main caveat is that the proposal distribution
ignores the observed counts and too many samples might be needed when the
prior is far from the joint distribution.

An alternative to this problem is to use samples from the posterior dis-
tribution and build an unbiased estimator through the Harmonic Mean (HM)
method [12]. To sample the posterior, one needs to consider the augmented GaP-
FA and perform Gibbs Sampling on the locally conjugated complete conditionals
as in [17]. Although this method has been used in LDA-like topic models [8, 14],
the same authors expressed some reservations when introducing it due to the
non-stable convergence and high variance. Note that this estimator can neither
be built on the discrete variables of the augmented model xn::.

In fact, the deterministic relationship between the observed counts and the la-
tent topic counts is what causes difficulties to tune other methods such Annealed
Importance Sampling (AIS) [11], which transitions between the prior over the
topic assignments and its posterior through a series of tempered distributions,
or Chib-style estimators [10].

Related work in Poisson Factorization for topic modeling computes perplexity
scores by holding out some random words in the document-term matrix instead
of the full document [17]. A similar approach in LDA-like models consists in
holding out the second half of a document, while the first half is added to the
training data. The evaluation task, known as document completion [15], consist
in computing the probability of the second half given the first. Although these
tasks are known to be well correlated but biased for LDA, rigorous studies has
not yet been conducted for GaP-FA. This work also paves the way to calibrate
these tasks against the exact calculation and to develop specialized and unbiased
sampling methods that approximate word prediction or document completion.

5 L2R: a Left-to-right Algorithm for GaP-FA

In this section we present L2R, a tailored left-to-right sequential sampler [4] for
GaP-FA. L2R builds on the general product rule of probability, in which any
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joint distribution can be decomposed into the product of several conditionals.
By considering a left-to-right order of words, the joint probability of a docu-
ment is decomposed by the product of W conditional probabilities where each is
conditioned to the preceding left words. We can express this decomposition for
GaP-FA as,

p(yn:;Φ, p, r) =

W∏
w=1

p(ynw|yn<w;Φ, p, r) (10)

where < w refers to words on the left side of w. Nonetheless, the exact calculation
of these conditionals is still as intractable as the previous marginal likelihood. We
now introduce the left topic counts xn<w: and marginalize them out as follows,

p(yn:;Φ, p, r) =

W∏
w=1

∑
xn<w:

p(ynw, xn<w:|yn<w;Φ, p, r). (11)

Given that the w-th word counts, ynw, are conditionally independent from the
left-hand side counts yn<w given their topic counts xn<w:, the joint expression
above can be split into two factors as,

p(yn:;Φ, p, r) =

W∏
w=1

∑
xn<w:

p(ynw|xn<w:;Φ, p, r)p(xn<w:|yn<w;Φ, p, r). (12)

This expression uncovers a sampling structure which suggests to draw sam-
ples from the posterior over the topic counts on the left-hand side of w and to
evaluate the conditional probability of the current word count given these left
samples. In other words, the two step process can be summarized as follows

x
(s)
n<w: ∼ p(xn<w:|yn<w;Φ, p, r) (13)

p(yn:;Φ, p, r) ≈
W∏
w=1

1

S

S∑
s=1

p(ynw|x(s)n<w:;Φ, p, r) (14)

Next, we present a method for drawing samples from the posterior over the
topic counts in Eq. (13) and a strategy to approximate the inner conditionals in
Eq. (14). This will enable us to address the two first issues mentioned in the In-
troduction. Then, we show that if we re-order documents in a particular way, we
can avoid computing the product in Eq. (14) across all words in the vocabulary
W , which addresses the third issue. Finally, we summarize all these contribu-
tions in the pseudo-code for the L2R algorithm and discuss its computational
complexity.

5.1 Sampling the Left-hand Topics

The posterior distribution in Eq. (13) does not have a closed-form expression
due to the intractable normalizing constant. Therefore, a common thing to do is
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to build a Gibbs sampler to draw samples from it. However, the complete con-
ditionals p(xnw′:|x¬w

′

n<w:, yn<w;Φ, p, r) ∀w′ < w do not admit a computationally
feasible sampler due to the conditioning on the observed counts ynw′ .

One way to sample from this posterior is to consider the augmented model
in Eq. (3), but only over the left-hand side of w. This makes the model locally
conjugate and it enables the derivation of the complete conditionals as,

p(θnk|−) = Ga(θnk; rk +
∑
w′<w

xn<w′k,
pk

1− pk + pk
∑
w′<w φkw′

) ∀k ≤ K

(15)

p(xnw′:|−) = Mult(xnw′:; ynw′ ,
φ:w′θn:∑
k φkw′θnk

) ∀w′ < w (16)

where |−) refers to all variables except the conditioned. These expressions can
be integrated in a Gibbs sampling scheme in which we first sample Eq. (15) and
then each of the left word counts as in Eq. (16), or vice-versa. However, only
samples from the left-hand topics need to be recorded for the L2R algorithm.

5.2 Approximating the Conditional Probability

The inner conditional probability in Eq. (14) can be expressed as the sum of
the marginal on xnw: over all possible topic counts, which must add up to the
w-th word count ynw. Given that topic counts are independent among them, the
marginal also factorizes. We can write this as,

p(ynw|x(s)n<w:;Φ, p, r) =
∑

xnwk∈Xynw

K∏
k=1

p(xnwk|x(s)n<wk;φk:, pk, rk). (17)

where the summation set Xynw = {xnw: ∈ (N ∪ 0)K | yn: =
∑K
k=1 xn:k} has

cardinality |Xynw
| =

(
ynw+K−1
K−1

)
.

The marginal above, which is conditioned to the left samples, can be derived
by leveraging on the augmented model. By introducing θnk, the probability of the

actual count xnwk becomes conditionally independent of the left samples x
(s)
n<wk

given the introduced θnk. Therefore, the left samples influence the probability
over θnk, but not that over xnwk as shown,

p(xnwk|−) =

∫
p(xnwk|θnk;φkw)p(θnk|x(s)n<wk;φk:, pk, rk) dθnk (18)

where -) refers to the set {x(s)n<wk, φk:, pk, rk}.
In the integral above, we substitute the probability over θnk for the Poisson

distribution in Eq. (2) and that over θnk for the complete conditional in Eq. (15).
The resulting integral corresponds to the compound probability distribution in
Eq. (4), which is a Negative Binomial (NB) parameterized as follows,
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p(xnwk|−) = NB(xnwk; rk +
∑
w′<w

x
(s)
nw′k,

φwkpk
1− pk + pk

∑
w′≤w φw′k

). (19)

Although it is possible to compute the exact conditional probability through
the closed-form expression given by Eq. (17), its computational cost still grows
exponentially with the number of topics (note that the exponential growth is
now independent of the number of non-zeros) and hence it is only tractable for
a small number of topics or word counts ynw.

Therefore, our alternative to the exact calculation consists in replacing the
complicated sum in Eq. (17) with a Monte Carlo estimate. To do that, we pro-
pose to perform Importance Sampling with a proposal distribution which is
conditioned to the left samples as follows,

q(xnw:|x(s)n<w:;φ:w, p, r) = Mult(xnw:; ynw,∝ φ:wEp(θn:|x(s)
n<w:,Φ,r,p)

[θn:]) (20)

where expectation over θn: is computed w.r.t the complete conditional in Eq. (15).
Given that this proposal is built taking into account the left-hand samples, the
proposal will be close to the marginal xnw: as long as the left counts are good
predictors of the target.

Finally, we estimate the conditional probability as,

x(s
′)

nw: ∼ q(xnw:|x(s)n<w:;φ:w, p, r)

p(ynw|x(s)n<w:;Φ, p, r) ≈
1

S′

∑
s′

p(x
(s′)
nw:|x(s)n<w:;Φ, p, r)

q(x
(s′)
nw:|x(s)n<w:;φ:w, p, r)

(21)

where S′ corresponds to another set of samples which replace the intractable
sum in Eq. (17). However, we will show in the experiments that with one single
sample S′ = 1, we can accurately approximate the exact in situations where the
topics for the w-th word are likely to be predicted from the preceding topics,
which it is often the case if some thematic structure exists in the corpus.

5.3 Dealing with zero words

The left-to-right decomposition rule in Eq. (10) does not impose any specific
word order to be valid. Besides, the inspection of the exact conditional formula
from Eqs. (17) (19) reveals that words without counts contribute with a tractable
term which only depends on the left-hand counts.

This suggests that if we re-order documents in such a way that all non-zero
words precede zeros, we can re-use the posterior samples drawn for non-zeros
words to calculate the probability of zeros. Note that zeros neither contribute
to the posterior sampling over the left-hand topics. This allows one to build a
conditional probability for all words without counts n ≥ wz that occur after the
non-zeros < wz. A closed-form expression can be derived for this probability
which can be computed in linear time with the number of topics as,



L2R for Likelihood Estimation in GaP-FA 11

p(yn≥wz |x
(s)
n<wz :;Φ, p, r) =

∏
k

(
1− pk + pk

∑
w′<wz

φw′k

1− pk + pk
∑
w′≤W φw′k

)rk+∑
w′<wz

x
(s)

nw′k

.

(22)
By re-ordering the document, reusing the posterior samples and the mathe-

matical simplification shown above, we can speed up the algorithm from com-
puting the conditional probability across all words in the vocabulary W to only
those with non-zero counts Wc. Given that for most corpora, the vocabulary
size is larger than the non-zero words per document (W ≥Wc), this supposes a
critical enhancement on the time-complexity of this algorithm as we show later.

5.4 Algorithm Pseudocode

In Algorithm 1, we present the pseudocode of L2R, summarizing the develop-
ments from the previous sections. The input data consists of the number of
samples S used to approximate each of the factors in the left-to-right decom-
position, the number of samples S′ to draw from the proposal distribution in
the case of sampled conditionals, the n-th document yn: sorted as in Section 5.3
and the point estimates for the global parameters Ω = {Φ, p, r}. The algorithm
outputs the approximate marginal document likelihood p(yn:;Φ, p, r).

Algorithm 1: L2R algorithm

input : S, S′, yn:, Ω = {Φ, p, r}
output: p(yn:;Ω)

1 for w ← 1 to Wc do
2 for s← 1 to S do

3 x
(s)
n<w: ← PostSamp(x

(s)
n<w:, Ω); Eqs. (15) (16)

4 p(ynw|x(s)n<w:;Ω) ← CondProb (x
(s)
n<w:, Ω,S

′); Eq. (21)

5 p(ynw|yn<w;Ω) = 1
S

∑
s p(ynw|x(s)n<w:;Ω)

6 wz ←Wc + 1
7 for s← 1 to S do

8 x
(s)
n<wz : ← PostSamp(x

(s)
n<wz :, Ω); Eqs. (15) (16)

9 p(yn≥wz |x
(s)
n<wz :;Ω) ← CondProbZeros (x

(s)
n<wz :, Ω); Eq. (22)

10 p(ynwz |yn<wz ;Ω) = 1
S

∑
s p(yn≥wz |x

(s)
n<wz :;Ω)

11 p(yn:;Ω) ≈
∏

w≤wz
p(ynw|yn<w;Ω)

From line 1 to 5, the algorithm approximates the conditionals distributions
for non-zero words by computing the averaged probability across S samples for
each word. To approximate this conditional probability, the algorithm uses the
Importance Sampling scheme defined in Eq. (21).
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From line 6 to 10, the algorithm approximates the conditionals for all words
without counts following the same procedure than for non-zeros, except that the
conditional for all non-zeros is computed at once in line 9 through its exact form
given by Eq. (22).

The final estimate for marginal document likelihood is build from the product
of the Wc + 1 probabilities in line 11.

5.5 On the Time Complexity of the L2R algorithm

The time complexity of the L2R algorithm can be derived from the cost of
the subprocesses in Algorithm 1. We first note that the cost of computing the
conditionals for all non-zero words dominates over that of zeros because line 4 is
linear with both the number of samples S′ and the number of topics K, whereas
line 9 is only linear with the latter. The cost of the posterior sampling process
in line 3 and 8 is also linear with the number of topics K and non-zeros Wc.
Therefore, the overall cost is given by O(WcS(Wc +K +S′)) which is quadratic
on the number of non-zero words. Note also that without the optimization of
zeros it would have been quadratic with the vocabulary size and without the
approximate conditionals, exponential with the number of topics.

6 Empirical results

In this section, we present the comparison results of the L2R algorithm against
the exact marginal likelihood, Direct Sampling (DS) and the Harmonic Mean
(HM) method. The code for L2R, DS and HM methods5, as well as the processed
corpora and trained GaP-FA have been made public6.

6.1 Experiment setup

We follow the setup in [4] which first compares methods against the exact in
tractable scenarios and then looks at convergence in more realistic cases. In
addition, we introduce a proper comparison metric, new document collections
and a model which also infers the number of topics.

Experiments We define two sets of experiments. The first consists in com-
paring the output probabilities of each estimator against the exact marginal
likelihood. Given that the computational complexity of the marginal likelihood
is only tractable in reasonably dimensioned scenarios and it is dominated by the
number of sums in Eq. (7), we restrict to scenarios in which the cardinality of
the summation set is less than 109. To do that, we choose a maximum of 1000
documents from a downsized corpus whose word counts do not exceed this limit
in a GaP-FA with a maximum of 5 topics. The second set of experiments consists

5 https://github.com/jcapde/L2R
6 https://doi.org/10.7910/DVN/GDTAAC
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Dataset Vocabulary
Num.
Docs

Doc.
Length

NIPS 11,463 5,811 1, 899± 513
AP 10,473 2,246 194± 111

20NGs 11,928 18,846 123± 247
Reuters 8,843 19,043 79± 75
Twitter 6,344 10,523 25± 4

WS 4,679 12,309 9± 3

Table 1: Document collections
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Fig. 1: KL Comparison of L2R vs. DS

in assessing the estimator’s convergence in more realistic conditions for which
the marginal likelihood is not tractable. In this setup, we use 1,000 evaluation
documents for each collection in a GaP-FA with a maximum of 100 topics.

Comparison measures To compare several document probabilities to their
true marginal, we propose to use the Kullback-Leibler (KL) or relative entropy,
which is a proper divergence measure for probability distributions. We can in-
terpret it as the number of extra bits required by the fact of using the estimated
probabilities instead of the exact in decoding a codebook of length the number of
evaluated documents. To study the convergence in realistic scenarios, we plot the
log-likelihood for all evaluated documents as function of the number of samples.

Document collections Table 1 contains the 6 collections used in the experi-
mentation. All datasets, except NIPS which was used as it is published7, were
pre-processed by removing stopwords, non-letters and words with two or less
characters. We have also applied Porter Stemming and filtered out words that
appeared less than 5 times or in more than 50% of documents. Then, vocabular-
ies were cropped to the 100 most frequent words for experiments with the exact
marginal and they were used as in Table 1 for experiments in realistic condi-
tions. Note that collections in Table 1 are ordered decreasingly on the average
document length, being datasets at the top commonly used as long-text corpus,
while those at the bottom used in short-text studies.

Model hyperparameters, training and samplers parameters Among all
possible GaP-PFA models, we have chosen to train the βΓ -PFA model [17]. This
model also corresponds to the GaP model [5] with inference on the number of
topics by placing a Beta Process over the p hyperparameter in the Gamma-
distributed factors from Eq. (3). This allows us to avoid model selection on a
critical parameter such the number of topics. But, several other model hyperpa-
rameters need to be specified, such as the maximum number of topics which was

7 https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015
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Fig. 2: Relative Entropy or KL between the estimated document probabilities
and the exacts as a function of samples used. (Lower KL is better)

set as described above for the different experiments, the Dirichlet prior over Φ
which was set α = 0.1, the scale for gamma r = 1 and the Beta hyperparameters
c = 1 and ε = 1/Kmax, as in [17]. The training of the global parameters Φ, p, r
is performed with the complete collection following the Gibbs Sampling scheme
in [17] which runs for 1000 iterations and discards a burn-in period of 500.
Regarding the samplers, we varied the number of samples up to S = 10, 000 for
all methods, and we used S′ = 1 for L2R to keep the same overall number of
samples for all estimators.

6.2 Experiments in dimensioned document collections

Fig. 2 shows the KL divergence between the exact and estimated probabilities
as a function of the number of samples used by each estimation method. In
this experiment, we have included the L2R with exact conditionals given by
Eqs. (17) (19) to compare against the proposed sampling. We have calculated
the KL for all 4 estimation methods in the 6 collections with 1000 documents,
except in NIPS and AP which only contained 1 and 460 documents with a
tractable marginal, respectively. Each experiment was repeated 10 times and we
plotted their mean and standard error.

Results show that the L2R with exact conditionals achieves the lowest KL
across all 6 datasets, followed very closely by the proposed L2R algorithm with
S′ = 1 which obtains the second lowest KL in 4 datasets. We note that L2R
performs worse than DS in Twitter and WS datasets, which both are the shortest
text datasets. This poor performance in short-text can also be explained by the
fact that vanilla topic models struggle to learn predictive topic structure due
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Fig. 3: Log-likelihood of the evaluated documents as a function of the number of
samples.

to few word co-occurrence in a document, and hence the proposal in Eq. (20)
is not close enough to the target to accurately estimate the conditionals with
a single sample. Unreported experiments confirm us that a larger S′ makes the
L2R estimates closer to those of the L2R with exact conditionals. In Fig. 1, we
have compared the quality of L2R vs DS, as per the results obtained in the last
sample of Fig. 2, as a function of the average document length of the downsized
corpora. We observe a favorable tendency for the L2R with longer documents
which motivates its use in more realistic scenarios.

6.3 Experiments in realistic document collections

In Fig. 3, we plot the log-likelihood of 1,000 documents as a function of samples
for the three methods that scale to the realistic scenario described above. Results
show that L2R converges faster than DS in all 6 collections. The HM method
has also a good convergence rate in the 4 datasets with longest documents,
although the inaccuracy reported previously suggests that the method might be
over-estimating the document likelihood like in LDA [15, 4]. Therefore, the fast
convergence and the fact that its estimates are sandwiched by estimators that
tend to under- and over- estimate, validates L2R’s use for document likelihood
estimation in GaP-FA with just a few hundreds of samples.

7 Conclusions

In this paper, we have proposed L2R, a left-to-right algorithm for estimating
the marginal document likelihood in GaP-FA. The accurate estimation in di-
mensioned scenarios and the quick convergence in realistic scenarios encourages
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its use for evaluating and comparing GaP-FA topic models in terms of unseen
document likelihood.

Future work should explore new estimation methods capable of reducing the
time complexity of L2R, which is quadratic in the number of non-zero words.
Exploring the use of these methods and the exact calculation for other evaluation
tasks like document completion or word prediction is another interesting avenue
for future work.
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