
Noname manuscript No.
(will be inserted by the editor)

ROCKET: Exceptionally fast and accurate time series
classification using random convolutional kernels

Angus Dempster · François Petitjean ·
Geoffrey I. Webb

Received: date / Accepted: date

Abstract Most methods for time series classification that attain state-of-the-art
accuracy have high computational complexity, requiring significant training time
even for smaller datasets, and are intractable for larger datasets. Additionally,
many existing methods focus on a single type of feature such as shape or frequency.
Building on the recent success of convolutional neural networks for time series clas-
sification, we show that simple linear classifiers using random convolutional kernels
achieve state-of-the-art accuracy with a fraction of the computational expense of
existing methods. Using this method, it is possible to train and test a classifier
on all 85 ‘bake off’ datasets in the UCR archive in less than 2 hours, and it is
possible to train a classifier on a large dataset of more than one million time series
in approximately one hour.

Keywords scalable · time series classification · random · convolution

1 Introduction

Most methods for time series classification that attain state-of-the-art accuracy
have high computational complexity, requiring significant training time even for
smaller datasets, and simply do not scale to large datasets. This has motivated
the development of more scalable methods such as Proximity Forest (Lucas et al.

Angus Dempster · François Petitjean · Geoffrey I. Webb
Faculty of Information Technology, Monash University, Melbourne, Australia
E-mail: {angus.dempster1,francois.petitjean,geoff.webb}@monash.edu

12345678

BOSS
ProximityForest

ST
ResNet InceptionTime

HIVE-COTE
TS-CHIEF
Rocket

Fig. 1 Mean rank of Rocket versus state-of-the-art classifiers on the 85 ‘bake off’ datasets.

2 Angus Dempster et al.

2019), TS-CHIEF (Shifaz et al. 2020), InceptionTime (Ismail Fawaz et al. 2019c),
MrSEQL (Le Nguyen et al. 2019), and cBOSS (Middlehurst et al. 2019).

We show that state-of-the-art classification accuracy can be achieved using a
fraction of the time required by even these recent, more scalable methods, by trans-
forming time series using random convolutional kernels, and using the transformed
features to train a linear classifier. We call this method Rocket (for RandOm
Convolutional KErnel Transform).

Existing methods for time series classification typically focus on a single repre-
sentation such as shape, frequency, or variance. Convolutional kernels constitute a
single mechanism which can capture many of the features which have each previ-
ously required their own specialised techniques, and have been shown to be effec-
tive in convolutional neural networks for time series classification such as ResNet
(Wang et al. 2017; Ismail Fawaz et al. 2019a), and InceptionTime.

In contrast to learned convolutional kernels as used in typical convolutional
neural networks, we show that it is effective to generate a large number of random
convolutional kernels which, in combination, capture features relevant for time se-
ries classification—even though, in isolation, a single random convolutional kernel
may only very approximately capture a relevant feature in a given time series.

Rocket achieves state-of-the-art classification accuracy on the datasets in the
UCR archive (Dau et al. 2019), but requires only a fraction of the training time of
existing methods. Figure 1 shows the mean rank of Rocket versus several state-
of-the-art methods for time series classification on the 85 ‘bake off’ datasets from
the UCR archive (Dau et al. 2019; Bagnall et al. 2017). (The different subsets of
the UCR archive are discussed in section 4.1.1, below.) Restricted to a single CPU
core, the total training time for Rocket is:

– 6 minutes 33 seconds for the ‘bake off’ dataset with the largest training set
(ElectricDevices, with 8,926 training examples), compared to 31 minutes for
MrSEQL, 1 hour 35 minutes for Proximity Forest, 2 hours 24 minutes for
TS-CHIEF, 3 hours 6 minutes for cBOSS, and 7 hours 46 minutes for Incep-
tionTime (trained on GPUs); and

– 4 minutes 18 seconds for the ‘bake off’ dataset with the longest time series
(HandOutlines, with time series of length 2,709), compared to 42 minutes for
cBOSS, 1 hour 55 minutes for MrSEQL, 8 hours 10 minutes for InceptionTime
(trained on GPUs), almost 3 days for Proximity Forest, and more than 4 days
for TS-CHIEF.

The total compute time (training and test) for Rocket on all 85 ‘bake off’
datasets is 1 hour 40 minutes, compared to 19 hours 33 minutes for cBOSS, ap-
proximately 1 day for MrSEQL, more than 6 days for InceptionTime (trained and
tested using GPUs), and more than 11 days for each of Proximity Forest and TS-
CHIEF. Timings for Rocket are averages over 10 runs, performed on a cluster
using a mixture of Intel Xeon E5-2680 v3 and Intel Xeon Gold 6150 processors, re-
stricted to a single CPU core per dataset per run. These figures represent the total
compute time required for all 85 ‘bake off’ datasets in sequence (not in parallel).

Rocket is also more scalable for large datasets, with training complexity linear
in both time series length and the number of training examples. Rocket can learn
from 1 million time series in 1 hour 3 minutes, to a similar accuracy as Proximity
Forest, which requires more than 16 hours to train on the same quantity of data.
A restricted variant of Rocket can learn from the same 1 million time series in

ROCKET: Exceptionally fast and accurate time series classification 3

less than 1 minute, or approximately 100 times faster again, albeit to a slightly
lower accuracy. Rocket is naturally parallel, and can be made even faster by using
multiple CPU cores (our implementation automatically parallelises the transform
across multiple CPU cores where available) or GPUs.

The rest of this paper is structured as follows. In section 2, we review relevant
related work. In section 3, we explain Rocket in detail. In section 4, we present our
experimental results, including a comparison of the accuracy of Rocket against
existing state-of-the-art classifiers on the datasets in the UCR archive, a scalability
study, and a sensitivity analysis.

2 Related Work

2.1 State-of-the-Art Methods

The task of time series classification can be thought of as involving learning or
detecting signals or patterns within time series associated with relevant classes.
‘[D]ifferent problems require different representations’ (Bagnall et al. 2017, p. 647),
and classes may be distinguished by multiple types of patterns: ‘discriminatory
features in multiple domains’ (Bagnall et al. 2017, p. 645).

Different methods for time series classification represent different approaches
for extracting useful features from time series (Bagnall et al. 2017). Existing ap-
proaches typically focus on a single type of feature, such as frequency or variance
of the signal, or the presence of discriminative subseries (shapelets). Bagnall et al.
(2017) identified COTE, since superseded by HIVE-COTE (Lines et al. 2018),
Shapelet Transform (Hills et al. 2014; Bostrom and Bagnall 2015), and BOSS
(Schäfer 2015) as the three most accurate classifiers on the UCR archive.

BOSS is one of several dictionary-based methods which use a representation
based on the frequency of occurrence of patterns in time series (Bagnall et al.
2017). BOSS has a training complexity quadratic in both the number of training
examples and time series length, O(n2 ·l2). cBOSS is a recent, more scalable variant
of BOSS. Another related method, WEASEL, is more accurate than BOSS, but
with a similar training complexity and high memory complexity (Schäfer and Leser
2017; see also Lucas et al. 2019).

Shapelet Transform is one of several methods based on finding discriminative
subseries, so-called ‘shapelets’ (Bagnall et al. 2017). Shapelet Transform has a
training complexity quadratic in the number of training examples, and quartic in
time series length, O(n2 · l4). There are other, more scalable, shapelet methods,
but these are less accurate (Bagnall et al. 2017).

HIVE-COTE is a large ensemble of other classifiers, including BOSS and
Shapelet Transform, as well as classifiers based on elastic distance measures and
frequency representations. Since Lines et al. (2018), HIVE-COTE has been consid-
ered the most accurate method for time series classification. The training complex-
ity of HIVE-COTE is bound by the complexity of Shapelet Transform, O(n2 · l4),
but its other components also have high computational complexity, such as the
Elastic Ensemble with O(n2 · l2).

4 Angus Dempster et al.

2.2 More Scalable Methods

The high computational complexity of existing state-of-the-art methods for time
series classification makes these methods slow, even for smaller datasets, and in-
tractable for large datasets. This has motivated the development of more scalable
methods, including Proximity Forest, TS-CHIEF, InceptionTime, and others.

Proximity Forest is an ensemble of decision trees, using elastic distance mea-
sures as splitting criteria (Lucas et al. 2019), with a training complexity quasilinear
in the number of training examples, but quadratic in time series length.

TS-CHIEF builds on Proximity Forest, incorporating dictionary-based and
interval-based splitting criteria (Shifaz et al. 2020). Like Proximity Forest, TS-
CHIEF has a training complexity quasilinear in the number of training examples,
but quadratic in time series length.

As well as cBOSS, other recent more scalable methods include MrSEQL, MiST-
iCl (Raza and Kramer 2019), and catch22 (Lubba et al. 2019). MrSEQL and MiST-
iCl both use underlying representations similar to those used in many dictionary
methods such as BOSS. MrSEQL uses a specialised sequence classification algo-
rithm, MiSTiCl is based on the use of a string mining algorithm, and catch22 is a
transform based on 22 predefined time series features. MrSEQL is stated to have a
training complexity linear in training set size and quasilinear in time series length,
while MiSTiCl is linear in both training set size and time series length. catch22
(transform only) is linear in training set size and ‘near linear’ in time series length.

Several methods for time series classification using convolutional neural net-
works have been proposed (see generally Ismail Fawaz et al. 2019a). More recently,
InceptionTime (Ismail Fawaz et al. 2019c), an ensemble of five deep convolutional
neural networks based on the Inception architecture, has been demonstrated to be
competitive with HIVE-COTE on the UCR archive.

Convolutional neural networks are typically trained using stochastic gradient
descent or closely related algorithms such as, for example, Adam (Kingma and Ba
2015). The training complexity of stochastic gradient descent is essentially linear
with respect to the number of training examples, and training can be parallelised
using GPUs (Goodfellow et al. 2016, pp. 147–149; Bottou et al. 2018).

2.3 Convolutional Neural Networks and Convolutional Kernels

Ismail Fawaz et al. (2019c, pp. 2–3) observe that the success of convolutional neural
networks for image classification suggests that they should also be effective for time
series classification, given that time series have essentially the same topology as
images, with one less dimension (see also Bengio et al. 2013, p. 1820–1821).

Convolutional neural networks represent a different approach to time series
classification than many other methods. Rather than approaching the problem
with a preconceived representation, convolutional neural networks use convolu-
tional kernels to detect patterns in the input. In learning the weights of the ker-
nels, a convolutional neural network learns the features in time series that are
associated with different classes (Ismail Fawaz et al. 2019a).

A kernel is convolved with an input time series through a sliding dot product
operation, to produce a feature map which is, in turn, used as the basis for clas-
sification (see Ismail Fawaz et al. 2019a). The basic parameters of a kernel are its

ROCKET: Exceptionally fast and accurate time series classification 5

size (length), weights, bias, dilation, and padding (see generally Goodfellow et al.
2016, ch. 9). A kernel has the same structure as the input, but is typically much
smaller. For time series, a kernel is a vector of weights, with a bias term which
is added to the result of the convolution operation between an input time series
and the weights of the given kernel. Dilation ‘spreads’ a kernel over the input such
that with a dilation of two, for example, the weights in a kernel are convolved
with every second element of an input time series (see Bai et al. 2018). Padding
involves appending values (typically zero) to the start and end of input time se-
ries, typically such that the ‘middle’ weight of a given kernel aligns with the first
element of an input time series at the start of the convolution operation.

Convolutional kernels can capture many of the types of features used in other
methods. Kernels can capture basic patterns or shapes in time series, similar to
shapelets: the convolution operation will produce large output values where the
kernel matches the input (see also section 2.5). Further, dilation allows kernels
to capture the same pattern at different scales (Yu and Koltun 2016). Multiple
kernels in combination can capture complex patterns.

The feature maps produced in applying a kernel to a time series reflect the
extent to which the pattern represented by the kernel is present in the time series.
In a sense, this is not unlike dictionary methods, which are based on the frequency
of occurrence of patterns in time series.

The kernels learned in convolutional neural networks often include filters for
frequency (see, e.g., Krizhevsky et al. 2012; Yosinski et al. 2014; Zeiler and Fergus
2014). Saxe et al. (2011) demonstrate that even random kernels are frequency
selective. Frequency information is also captured through dilation: larger dilations
correspond to lower frequencies, smaller dilations to higher frequencies.

Kernels can detect patterns in time series despite warping. Pooling mechanisms
make kernels invariant to the position of patterns in time series. Dilation allows
kernels with similar weights to capture patterns at different scales, i.e., despite
rescaling. Multiple kernels with different dilations can, in combination, capture
discriminative patterns despite complex warping.

The success of convolutional neural networks for time series classification, such
as ResNet and InceptionTime, demonstrates the effectiveness of convolutional ker-
nels as the basis for time series classification.

2.4 Random Convolutional Kernels

The weights of convolutional kernels are typically learned. However, it is well
established that random convolutional kernels can be effective (Jarrett et al. 2009;
Pinto et al. 2009; Saxe et al. 2011; Cox and Pinto 2011).

Ismail Fawaz et al. (2019c) observe that individual convolutional neural net-
works exhibit high variance in classification accuracy on the UCR archive, moti-
vating the use of ensembles of such architectures with a large number and variety
of kernels (see Ismail Fawaz et al. 2019b). It may be that learning ‘good’ kernels is
difficult on small datasets. Random convolutional kernels may have an advantage
in this context (see Jarrett et al. 2009; Yosinski et al. 2014).

The idea of using convolutional kernels as a transform, and using the trans-
formed features as the input to another classifier is well established (see, e.g.,

6 Angus Dempster et al.

Bengio et al. 2013, p. 1803). Franceschi et al. (2019) present a method for unsu-
pervised learning of convolutional kernels for a feature transform for time series
input, based on a multilayer convolutional architecture with dilation increasing ex-
ponentially in each successive layer. The method is demonstrated using the output
features as the input for a support vector machine. Random convolutional kernels
have been used as the basis of feature transformations. In Saxe et al. (2011), ran-
dom convolutional layers are used as the basis of a feature transform (for images),
used as the input for a support vector machine.

Here, there is a link between using random convolutional kernels as a transform
for time series and work in relation to random transforms for kernel methods (as in
support vector machines, not to be confused with convolutional kernels). Rahimi
and Recht (2008) proposed a random transform for approximating kernels for ker-
nel methods (see also Rahimi and Recht 2009). Morrow et al. (2017) propose a
method for approximating a string kernel for DNA sequences, based on Rahimi and
Recht (2008), which involves transforming input sequences using random convolu-
tional kernels, and using the resulting features to train a linear classifier. Morrow
et al. (2017, p. 1) describe their method as ‘a 1 layer random convolutional neural
network’. Also following Rahimi and Recht (2008), Jimenez and Raj (2019) pro-
pose a similar method for approximating a cross-correlation kernel for measuring
similarity between time series, involving convolving input time series with random
time series of the same length to produce what they call ‘random convolutional
features’, which can be used to train a linear classifier. Jimenez and Raj (2019)
evaluate their method on a selection of binary classification datasets from the UCR
archive. Farahmand et al. (2017) propose a feature transformation based on con-
volving input time series with random autoregressive filters. However, there are
key differences between Rocket and other methods using random convolutional
kernels in terms of: (a) the configuration of the convolutional kernels (bias, length,
dilation, and padding); (b) the use of nonlinearities; (c) pooling; and (d) the need
with other methods to ‘tune’ certain hyperparameters.

Rocket uses random kernel length, dilation, and padding. We demonstrate
that kernel dilation, in particular, is of critical importance to the high accuracy
achieved by Rocket (see section 4.3.4). Morrow et al. (2017) use a fixed kernel
length and Jimenez and Raj (2019) use kernels of the same length as the input.
Neither use kernel dilation or any variety in terms of padding. Rocket does not
use any nonlinearities, and uses both global max pooling as well as a very different
form of pooling, that is, the proportion of positive values or ppv (see section 3.2).
We demonstrate that the use of ppv has the single largest effect on accuracy
of any aspect of Rocket (see section 4.3.6). In contrast, Morrow et al. (2017)
and Jimenez and Raj (2019) both use cosine nonlinearities and a kind of global
average pooling. Rocket also uses bias differently. For Rocket, there is a close
connection between bias and ppv, where bias acts as a kind of ‘threshold’ for ppv
(see section 3.2). Additionally, the only hyperparameter for Rocket is the number
of convolutional kernels, k. In practice, this is left at its default value of 10,000,
and does not require tuning. Both Morrow et al. (2017) and Jimenez and Raj
(2019) tune different hyperparameters via cross-validation.

ROCKET: Exceptionally fast and accurate time series classification 7

2.5 Shapelets and Random Shapelets

There are also similarities with methods based on shapelets. Broadly, both meth-
ods using convolutional kernels and methods using shapelets attempt to discrimi-
nate between classes based on the similarity of input time series to a set of patterns.
The convolution operation is based on the dot product which, if used in conjunc-
tion with global max pooling, is very similar to Euclidean distance typically used
in shapelet methods (Cui et al. 2016). On this basis, there is a connection between
methods using random convolutional kernels and methods using random shapelets
such as Wistuba et al. (2015), Renard et al. (2015), and Karlsson et al. (2016).
However, there are several important characteristics differentiating Rocket from
shapelet methods, including methods using random shapelets.

The equivalence between shapelet distance and the convolution operation does
not necessarily hold for pooling methods other than global max pooling and, as
noted above, in addition to global max pooling, Rocket uses a very different
kind of pooling, i.e., ppv (see section 3.2). There is no direct equivalent for some
aspects of convolutional kernels in shapelet methods, such as dilation and bias.
Again, the use of dilation and ppv are the two most important aspects of Rocket
(see sections 4.3.4 and 4.3.6). Bias, in turn, is integral to ppv, acting as a kind of
threshold value. As in Wistuba et al. (2015), Renard et al. (2015), and Karlsson
et al. (2016), shapelets are typically sampled from the input, and are typically
longer subsequences (up to the length of the input). The convolutional kernels
used in Rocket are short, and are not sampled from the input.

3 Method

Rocket transforms time series using a large number of random convolutional
kernels, i.e., kernels with random length, weights, bias, dilation, and padding. The
transformed features are used to train a linear classifier. For all but the largest
datasets, we use a ridge regression classifier, which has the advantage of fast cross-
validation for the regularisation hyperparameter (and no other hyperparameters).
Nonetheless, as logistic regression trained using stochastic gradient descent is more
scalable for very large datasets, we use logistic regression when the number of
training examples is substantially greater than the number of features.

Four things distinguish Rocket from convolutional layers as used in typical
convolutional neural networks, and from previous work using convolutional kernels
(including random kernels) with time series:

1. Rocket uses a very large number of kernels. As there is only a single ‘layer’
of kernels, and as the kernel weights are not learned, the cost of computing
the convolutions is low, and it is possible to use a very large number of kernels
with relatively little computational expense.

2. Rocket uses a massive variety of kernels. In contrast to typical convolutional
neural networks, where it is common for groups of kernels to share the same
size, dilation, and padding, for Rocket each kernel has random length, dila-
tion, and padding, as well as random weights and bias.

3. In particular, Rocket makes key use of kernel dilation. In contrast to the
typical use of dilation in convolutional neural networks, where dilation increases

8 Angus Dempster et al.

exponentially with depth (e.g., Yu and Koltun 2016; Bai et al. 2018; Franceschi
et al. 2019), we sample dilation randomly for each kernel, producing a huge
variety of kernel dilation, capturing patterns at different frequencies and scales,
which is critical to the performance of the method (see section 4.3.4).

4. As well as using the maximum value of the resulting feature maps (broadly
speaking, similar to global max pooling), Rocket uses an additional and, to
our knowledge, novel feature: the proportion of positive values (or ppv). This
enables a classifier to weight the prevalence of a given pattern within a time
series. This is the single element of the Rocket architecture that is most
critical to its outstanding accuracy (see section 4.3.6).

Further, while the combination of Rocket and logistic regression forms, in ef-
fect, a single-layer convolutional neural network with random kernel weights, where
the transformed features form the input for a trained softmax layer, there are im-
portant differences between Rocket and other neural network architectures. In
particular: (a) Rocket does not use a hidden layer, or any nonlinearities; (b) the
features produced by Rocket are independent of each other (there are no ‘con-
nections’ between the convolutional kernels); and (c) strictly speaking, Rocket
does not mandate the use of a particular classifier and, indeed, we suggest using
different classifiers (namely, the ridge regression classifier or logistic regression) in
different contexts.

We implement Rocket in Python, using just-in-time compilation via Numba
(Lam et al. 2015). For the experiments on the datasets in the UCR archive, we
use a ridge regression classifier from scikit-learn (Pedregosa et al. 2011). For the
experiments studying scalability, we integrate Rocket with logistic regression and
Adam, implemented using PyTorch (Paszke et al. 2017). Our code will be made
available at https://github.com/angus924/rocket.

In developing Rocket, we have endeavoured to not overfit the architecture
and its parameters to the entire UCR archive (see Bagnall et al. 2017, p. 608).
At the same time, in order to develop the method, we required representative
time series datasets. Accordingly, we chose to develop the method on a subset of
40 randomly-selected datasets from the 85 ‘bake off’ datasets. We refer to these
as the ‘development’ datasets, and the remaining 45 datasets as the ‘holdout’
datasets. We provide a separate evaluation of the performance of Rocket on the
‘development’ datasets and the remaining ‘holdout’ datasets in Appendix B.

3.1 Kernels

Rocket transforms time series using convolutional kernels, as found in typical
convolutional neural networks. Essentially all aspects of the kernels are random:
length, weights, bias, dilation, and padding. For each kernel, these values are set
as follows (as determined by experimentation to produce the highest classification
accuracy on the ‘development’ datasets):

– Length. Length is selected randomly from {7, 9, 11} with equal probability,
making kernels considerably shorter than input time series in most cases.

– Weights. The weights are sampled from a normal distribution, ∀w ∈ W ,
w ∼ N (0, 1), and are mean centered after being set, ω = W −W . As such,
most weights are relatively small, but can take on larger magnitudes.

https://github.com/angus924/rocket

ROCKET: Exceptionally fast and accurate time series classification 9

– Bias. Bias is sampled from a uniform distribution, b ∼ U(−1, 1). Only positive
values in the feature maps are relevant for ppv (see section 3.2). Bias therefore
has the effect that two otherwise similar kernels, but with different biases, can
‘highlight’ different aspects of the resulting feature maps by shifting the values
in a feature map above or below zero by a fixed amount.

– Dilation. Dilation is sampled on an exponential scale d = b2xc, x ∼ U(0, A),

where A = log2
linput−1
lkernel−1 , which ensures that the effective length of the kernel,

including dilation, is up to the length of the input time series, linput. Dilation
allows otherwise similar kernels but with different dilations to match the same
or similar patterns at different frequencies and scales.

– Padding. When each kernel is generated, a decision is made (at random,
with equal probability) whether or not padding will be used when applying
the kernel. If padding is used, an amount of zero padding is appended to the
start and end of each time series when applying the kernel, such that the
‘middle’ element of the kernel is centered on every point in the time series, i.e.,
((lkernel−1)×d)/2. Without padding, kernels are not centered at the first and
last blkernel/2c points of the time series, and ‘focus’ on patterns in the central
regions of time series whereas with padding, kernels also match patterns at the
start or end of time series (see also section 3.4.1).

Stride is always one. We do not apply a nonlinearity such as the rectified
linear unit (or ReLU) to the resulting feature maps. Note that the parameters for
the weights and bias have been set based on the assumption that, as is standard
practice, input time series have been normalised to have a mean of zero and a
standard deviation of one (see generally Dau et al. 2019).

The above kernel parameters, having been determined through experimenta-
tion to produce the highest classification accuracy on the ‘development’ datasets
(see section 4.3), form an intrinsic part of Rocket and do not need to be ‘tuned’
for new datasets. In effect, the only hyperparameter for Rocket is the number
of kernels, k. However, in practice, there is no need to change k from its default
value of 10,000. In setting k, there is a tradeoff between classification accuracy and
computation time. Generally speaking, a larger value of k results in higher clas-
sification accuracy (see section 4.3.1), but at the expense of proportionally longer
computation: the complexity of the transform is linear with respect to k. However,
even with a very large number of kernels, Rocket is extremely fast.

As demonstrated in the sensitivity analysis in section 4.3, below, there are
several alternative configurations which produce similar classification accuracy to
the default kernel parameters set out above. Overall, this suggests that our method
is likely to generalise well to new problems, and that the kernel parameters are
relatively ‘uninformative’ in the Bayesian sense of the word.

3.2 Transform

Each kernel is applied to each input time series, producing a feature map. The
convolution operation involves a sliding dot product between a kernel and an
input time series. The result of applying a kernel, ω, with dilation, d, to a given
time series, X, from position i in X, is given by (see, e.g., Bai et al. 2018):

10 Angus Dempster et al.

Xi ∗ ω =

lkernel−1∑
j=0

Xi+(j×d) × ωj .

Rocket computes two aggregate features from each feature map, producing
two real-valued numbers as features per kernel, and composing our transform:

– the maximum value (broadly speaking, equivalent to global max pooling); and
– the proportion of positive values (or ppv).

Pooling, including global average pooling (Lin et al. 2014), and global max
pooling (Oquab et al. 2015), is used in convolutional neural networks for dimen-
sionality reduction and spatial or temporal invariance (Boureau et al. 2010).

The other aggregated feature, ppv, directly captures the proportion of the
input which matches a given pattern, i.e., for which the output of the convolution
operation is positive. The ppv works in conjunction with the bias term. The bias
term acts as a kind of ‘threshold’ for ppv. A positive bias value means that ppv
captures the proportion of the input reflecting even ‘weak’ matches between the
input and a given pattern, while a negative bias value means that ppv only captures
the proportion of the input reflecting ‘strong’ matches between the input and
the given pattern. We found that ppv produces meaningfully higher classification
accuracy than other features, including the mean (broadly equivalent to global
average pooling).

For each kernel, Rocket produces two features: ppv and max. Accordingly, for
k kernels, Rocket produces 2k features per time series, and for 10,000 kernels (the
default), Rocket produces 20,000 features. For smaller datasets—in fact, for all
of the datasets in the UCR archive—the number of features is therefore possibly
much larger than either the number of examples in the dataset or the number of
elements in each time series.

Nevertheless, we find that the features produced by Rocket provide for high
classification accuracy when used as the input for a linear classifier, even for
datasets where the number of features dwarfs both the number of examples and
the length of the time series.

3.3 Classifier

The transformed features are used to train a linear classifier. Rocket can, in
principle, be used with any classifier. We have found that Rocket is very effective
when used in conjunction with linear classifiers, which have the capacity to make
use of a small amount of information from each of a large number of features. In
our experiments, we use either a ridge regression classifier or logistic regression,
depending on dataset size. We suggest using the ridge regression classifier where
the number of training examples is less than the number of features (i.e., by default,
for less than 20,000 training examples), and otherwise using logistic regression.

Logistic regression. Rocket can be used with logistic regression and stochastic
gradient descent. This is particularly suitable for very large datasets because it
provides for fast training with a fixed memory cost (fixed by the size of each
minibatch). The transform can be performed on each minibatch, or on larger
tranches of the dataset which are then divided further into minibatches for training.

ROCKET: Exceptionally fast and accurate time series classification 11

Ridge regression. However, for all of the datasets in the UCR archive we use a
ridge regression classifier, where a ridge regression model is trained for each class
in a ‘one versus rest’ fashion, with L2 regularisation.

Regularisation is critically important where the number of features is signifi-
cantly greater than the number of training examples, allowing for the optimisation
of linear models, and preventing pathological behaviour in iterative optimisation,
e.g., for logistic regression (see Goodfellow et al. 2016, pp. 232–233). The ridge
regression classifier can exploit generalised cross-validation to determine an ap-
propriate regularisation parameter quickly (see Rifkin and Lippert 2007). We find
that, for smaller datasets, a ridge regression classifier is significantly faster in prac-
tice than logistic regression, while still achieving high classification accuracy. We
find that, for smaller datasets, it is significantly more challenging and time con-
suming to optimise the multiple hyperparameters for logistic regression (minibatch
size, learning rate, regularisation, etc.) to achieve the same classification accuracy
as the ridge regression classifier.

3.4 Complexity Analysis

The computational complexity of Rocket has two aspects: (1) the complexity of
the transform itself; and (2) the complexity of the linear classifier trained using
the transformed features.

3.4.1 Transform

The transform itself is linear in relation to both: (a) the number of examples; and
(b) the length of the time series in a given dataset. Formally, the computational
complexity of the transform is O(k ·n·linput), where k is the number of kernels, n is
the number of examples, and linput is the length of the time series. The transform
must be applied to both training and test sets.

The convolution operation can be implemented in more than one way, including
as a matrix multiplication typical of implementations for convolutional neural
networks, and using the fast Fourier transform (see Goodfellow et al. 2016, ch. 9).
We implement Rocket simply, ‘sliding’ each kernel along each time series and
computing the dot product at each location. This involves repeated elementwise
multiplication and summation, the complexity of which is dictated by the length
of the time series, and the length of the kernels (that is, the number of weights
in the kernels). The length of the kernels for Rocket is limited to, at most, 11.
Accordingly, kernel length is a constant factor for the purpose of this analysis.

Dilation increases the effective size of a kernel. Accordingly, where no padding
is used, dilation reduces computational complexity. Without padding, the convo-
lution is computed with the first element of the kernel starting at the first element
of the time series, and ends once the last element of the kernel reaches the last
element of the time series. In an extreme case, for the largest values of dilation,
the kernel will ‘fill’ the entire time series, and the number of computations will be
the number of weights in the kernel. However, padding is applied randomly with
equal probability, so the reduction in complexity is a constant factor.

Where padding is used, dilation has no effect on complexity: the same number
of computations are required regardless of dilation or the effective size of the kernel.

12 Angus Dempster et al.

Regardless of dilation, the kernel is centered on the first element of the time series,
and ‘slides’ the same number of elements along the time series.

Accordingly, for k kernels and n time series, each of length linput, the complex-
ity of the transform is O(k · n · linput). For datasets with time series of different
lengths, this could be taken to represent average complexity for an average length
of linput, or worst-case complexity for a maximum length of linput.

3.4.2 Classifier

Logistic regression and stochastic gradient descent. The complexity of stochastic
gradient descent is proportional to the number of parameters (dictated by the
number of features and the number of classes), but is linear in relation to the
number of training examples (Bottou et al. 2018). Further, the rate of conver-
gence is not determined by the number of training examples. For large datasets,
convergence may occur in a single pass of the data, or even without using all of
the training data (Goodfellow et al. 2016, pp. 286–288; Bottou et al. 2018).

Ridge regression. In practice, the ridge regression classifier is significantly faster
than logistic regression on smaller datasets because it can make use of so-called
generalised cross-validation to determine appropriate regularisation. The imple-
mentation used here employs eigen decomposition where there are more features
than training examples, or singular value decomposition otherwise, with effective
complexity of O(n2 ·f) and O(n ·f2) respectively (see Dongarra et al. 2018), where
n is the number of training examples and f is the number of features.

This makes the ridge regression classifier less scalable for large datasets. This
also requires the complete transform, and does not work incrementally. In practice,
these limitations do not affect any of the datasets in the UCR archive. For larger
datasets, where the importance of regularisation decreases, and it is appropriate
to perform the transform incrementally, the benefit of using the ridge regression
classifier wanes, and training with stochastic gradient descent makes more sense.

3.5 Memory

The ridge regression classifier requires the transform for the entire training set.
The amount of memory required for the transform depends on training set size, n,
and the number of kernels, k. By default, for k = 10,000 (i.e., 20,000 features), the
transform requires 20,000×8×n bytes, or approximately 160 MB per 1,000 training
examples or, equivalently, approximately 1.6 GB per 10,000 training examples. In
practice, for all but one of the ‘bake off’ datasets, less than 4GB of memory is
required for training the ridge regression classifier (including the memory required
to store the transform itself). For the ‘bake off’ dataset with the largest number
of training examples, ElectricDevices, less than 8 GB is required. In contrast, for
logistic regression trained using minibatch gradient descent, the transform can
be applied per minibatch, so the amount of memory required is proportional to
minibatch size (e.g., approximately 40 MB would required for a minibatch size of
256). For both classifiers, test examples can be transformed as required.

ROCKET: Exceptionally fast and accurate time series classification 13

3.6 Limitations

One limitation of Rocket is that a large number of kernels is required in order
to achieve the highest classification accuracy which, in turn, limits the choice of
classifier to those classifiers that are effective for a very large number of features
(including the ridge regression classifier and logistic regression). An additional
limitation is that in using fixed, random kernels, learning is likely to ‘saturate’
at some point for very large datasets. We would expect more typical convolu-
tional neural network architectures with learned kernels, such as InceptionTime,
to achieve higher accuracy on very large datasets, albeit at much greater com-
putational expense. However, Rocket is at least usable for very large datasets,
whereas many existing methods for time series classification are not, and we note
that accuracy on the Satellite Image Time Series dataset only seems to plateau
after approximately half a million training examples (see section 4.2). Rocket is
currently only configured to work with univariate time series. The extension of
Rocket to multivariate time series and the application of Rocket to very large
datasets is the intended focus of future work.

4 Experiments

We evaluate Rocket on the UCR archive (section 4.1), demonstrating that Rocket
is competitive with current state-of-the-art methods, obtaining the best mean rank
over the 85 ‘bake off’ datasets.

We evaluate scalability in terms of both training set size and time series length
(section 4.2), demonstrating that Rocket is orders of magnitude faster than cur-
rent methods. We also evaluate the effect of different kernel parameters (section
4.3), showing that several alternative configurations of Rocket perform similarly
well, which is a good indication of the power of the idea, rather than of its fine-
tuning. Unless otherwise stated, all experiments use 10,000 kernels.

The experiments on the datasets in the UCR archive are performed using
Rocket in conjunction with a ridge regression classifier, and the experiment in
relation to training set size is performed using Rocket integrated with logistic
regression. The experiments on the UCR archive were conducted on a cluster
(but using a single CPU core per experiment, not parallelised for speed). The
experiments in relation to scalability (both time series length and training set
size) were performed locally using an Intel Core i5-5200U dual-core processor.

4.1 UCR Archive

4.1.1 Note on the Datasets in the UCR Archive

The UCR archive is a collection of datasets for time series classification (Dau et al.
2019). A seminal paper, Bagnall et al. (2017), conducted thorough comparative
benchmarking of a large number of methods for time series classification on the 85
datasets in the archive as of 2017. We call these the ‘bake off’ datasets after the
title of that paper. A further 43 datasets were added to the archive in 2018. We

14 Angus Dempster et al.

call these the ‘additional 2018 datasets’ (so far there are few published benchmark
results for these datasets).

Each dataset in the archive has a predefined training/test split. However, one
issue with using only a single training/test split is that there is a possibility that
methods ‘tuned’ (inadvertently or otherwise) for this training/test split may not
generalise well to other tasks (Bagnall et al. 2017; Dau et al. 2019). To this end,
Bagnall et al. (2017) used resamples of the datasets to assess performance. We have
performed experiments using both the original training/test splits, as well as ten
resamples of the relevant datasets (using the same first ten resamples, excluding
the original training/test split, as in Bagnall et al. (2017)).

4.1.2 ‘Bake Off’ Datasets

We evaluate Rocket on the 85 ‘bake off’ datasets from the UCR archive on the
original training/test split for each dataset. The results presented for Rocket are
mean results over 10 runs, using a different set of random kernels for each run.

We compare Rocket to existing state-of-the-art methods for time series clas-
sification, namely, BOSS, Shapelet Transform, Proximity Forest, ResNet, and
HIVE-COTE. We also compare Rocket with two more recent methods, Incep-
tionTime and TS-CHIEF, that have been demonstrated to be competitive with
HIVE-COTE, while being more scalable. The results for BOSS, Shapelet Trans-
form, and HIVE-COTE are taken from Bagnall et al. (2019).

For comparability with other published results, we compare Rocket to the
other methods on all 85 ‘bake off’ datasets. However, as noted above, to make sure
we didn’t overfit the UCR archive, Rocket was developed using a subset of 40
randomly-selected datasets. Separate rankings for the 40 ‘development’ datasets,
as well as the remaining 45 ‘holdout’ datasets, are provided in Appendix B.

Figure 1 on page 1 gives the mean rank for each method included in the
comparison. Classifiers for which the difference in pairwise classification accuracy
is not statistically significant, as determined by a Wilcoxon signed-rank test with
Holm correction (as a post hoc test to the Friedman test), are connected with
a black line (see Demšar 2006; Garćıa and Herrera 2008; Benavoli et al. 2016).
The relative accuracy of Rocket and each of the other methods included in the
comparison is shown in Figure 13, Appendix A.

Figure 1 on page 1 shows that Rocket is competitive with (in fact, ranks
slightly ahead of) HIVE-COTE, TS-CHIEF, and InceptionTime, although the
difference in accuracy between Rocket, HIVE-COTE, InceptionTime, and TS-
CHIEF is not statistically significant. TS-CHIEF ranks ahead of Rocket on the
45 ‘holdout’ datasets (Figure 15, Appendix B), but the difference is not significant.

Resamples. We also evaluate Rocket on ten resamples of the ‘bake off’ datasets.
The results are set out in Appendix D. The results for the resamples are essentially
the same as for the original training/test splits. In fact, while HIVE-COTE ranks
ahead of Rocket, Rocket is ‘stronger’ against both HIVE-COTE and TS-CHIEF
in terms of win/draw/loss on the resampled ‘bake off’ datasets than on the original
training/test splits.

ROCKET: Exceptionally fast and accurate time series classification 15

12345

ResNet
ProximityForest

TS-CHIEF
InceptionTime
Rocket

Fig. 2 Mean rank of Rocket vs state-of-the-art classifiers on the additional 2018 datasets.

Other Methods. We also compare Rocket against four recently-proposed scalable
methods for time series classification (see section 2.2), namely, MrSEQL, cBOSS,
MiSTiCl, and catch22. The results are set out in Appendix E. The results show
that Rocket is significantly more accurate and, with one exception, catch22, more
scalable than these methods. Rocket is considerably ahead of the most accurate
of these methods, MrSEQL, in terms of win/draw/loss (54/8/23) on the ‘bake off’
datasets, and Rocket is approximately an order of magnitude faster in terms of
total compute time than MrSEQL, cBOSS, and MiSTiCl.

4.1.3 Additional 2018 Datasets

We have also evaluated Rocket on the 43 additional datasets in the UCR archive
as of 2018. Figure 2 shows the mean rank of Rocket versus InceptionTime, TS-
CHIEF, Proximity Forest, and ResNet on the additional 2018 datasets. Figure 2
shows that Rocket is competitive with (in fact, ranks just ahead of) Inception-
Time and TS-CHIEF, although the difference in accuracy is not statistically sig-
nificant. The relative accuracy of Rocket and each of the other methods is shown
in Figure 14, Appendix A.

We note that there are currently few published results for state-of-the-art meth-
ods on these datasets. For comparability with the results for the other methods, we
have used a version of these datasets where missing values have been interpolated
and variable-length time series have been padded with ‘low amplitude random
[noise]’ to the same length as the longest time series (Dau et al. 2018, p. 16).

Resamples. We also compare Rocket, Proximity Forest, and TS-CHIEF on ten
resamples of the additional 2018 datasets (published results are not available for
other methods for these resamples). The results are set out in Appendix D. Sim-
ilarly as for the ‘bake off’ datasets, the results for these methods for the ten
resamples are essentially the same as for the original training/test splits.

Other methods. As for the ‘bake off’ datasets, Rocket is significantly more accu-
rate than MrSEQL, cBOSS, MiSTiCl, or catch22 on the additional 2018 datasets
and, with the exception of catch22, considerably faster (see Appendix E). Again,
Rocket is substantially ahead of the most accurate of these methods in terms of
win/draw/loss (32/0/11). Rocket is 4 times faster than cBOSS, 16 times faster
than MrSEQL, and almost 22 times faster than MiSTiCl on these datasets.

16 Angus Dempster et al.

4.2 Scalability

4.2.1 Training Set Size

Following Lucas et al. (2019), Shifaz et al. (2020), and Ismail Fawaz et al. (2019c),
we evaluate scalability in terms of training set size on increasingly larger subsets
(up to approximately 1 million time series) of the Satellite Image Time Series
dataset (see Petitjean et al. 2012). The time series in this dataset represent a veg-
etation index, calculated from spectral data acquired by the Formosat-2 satellite,
and the classes represent different land cover types. The aim in classifying these
time series is to map different vegetation profiles to different types of crops and
forested areas. Each time series has a length of 46.

For the purpose of this experiemnt, we use Rocket in conjunction with lo-
gistic regression (not the ridge regression classifier: see sections 3.3 and 3.4). The
transform is performed in tranches, further divided into minibatches for training.
Each time series is normalised to have a zero mean and unit standard deviation.

We train the model for at least one epoch for each subset size. To prevent
overfitting, we stop training (after the first epoch) if validation loss has failed to
improve after 20 updates. In practice, while training may continue for 40 or 50
epochs for smaller subset sizes, training converges within a single pass for anything
more than approximately 16,000 training examples. Validation loss is computed
on a separate validation set (the same set of 2,048 examples for all subset sizes).

Optimisation is performed using Adam (Kingma and Ba 2015). We perform
a minimal search on the initial learning rate to ensure that training loss does
not diverge. The learning rate is halved if training loss fails to improve after 100
updates (only relevant for larger subset sizes).

We have run Rocket in three guises: with 100, 1,000, and 10,000 kernels (the
default). We compare Rocket against Proximity Forest and TS-CHIEF, which
have already been demonstrated to be fundamentally more scalable than HIVE-
COTE (Lucas et al. 2019; Shifaz et al. 2020). (Results for larger quantities of data
are not yet available for InceptionTime.)

Figure 3 shows classification accuracy and training time versus training set
size for Rocket, Proximity Forest, and TS-CHIEF. As expected, Rocket scales
linearly with respect to both the number of training examples, and the number
of kernels (see section 3.4). With 1,000 or 10,000 kernels, Rocket achieves simi-
lar classification accuracy to Proximity Forest and TS-CHIEF. With 100 kernels,
Rocket achieves lower classification accuracy, but takes less than a minute to
learn from more than 1 million time series. Even with 10,000 kernels, Rocket is
an order of magnitude faster than Proximity Forest. Training time for smaller sub-
set sizes for Rocket is dominated by the cost of the transform for the validation
set, which is why training time is ‘flat’ for smaller subset sizes.

Other methods. We also compare the scalability of Rocket against MrSEQL,
cBOSS, MiSTiCl, and catch22. The results are set out in Appendix E. MrSEQL,
cBOSS, and MiSTiCl are all fundamentally less scalable than Rocket, and all four
methods are less accurate. By approximately 32,000 training examples, MrSEQL is
approximately 75 times slower than Rocket, MiSTiCl is approximately 200 times
slower, and cBOSS is more than 300 times slower. While slower than catch22 with

ROCKET: Exceptionally fast and accurate time series classification 17

28 210 212 214 216 218 220

Training Set Size

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

Accuracy vs Training Set Size

Rocket_10K
Rocket_1K
Rocket_100
TS-CHIEF
ProximityForest

28 210 212 214 216 218 220

Training Set Size

0.36 seconds

3.6 seconds

36 seconds

6 minutes

1 hour

10 hours

Rocket_10K

Rocket_1K

Rocket_100

TS-CHIEF

ProximityForest

Training Time vs Training Set Size

Fig. 3 Accuracy (left) and training time (right) versus training set size for the Satellite Image
Time Series dataset.

its default settings (i.e., 10,000 kernels), restricted to 100 kernels Rocket is an
order of magnitude faster than catch22 and still significantly more accurate.

4.2.2 Time Series Length

Following Shifaz et al. (2020) and Ismail Fawaz et al. (2019c), we evaluate scala-
bility in terms of time series length using the InlineSkate dataset from the UCR
archive. We use Rocket in the same configuration as for the other datasets in
the UCR archive (that is, using the ridge regression classifier and 10,000 kernels).
Results for HIVE-COTE and TS-CHIEF are taken from Shifaz et al. (2020).

Figure 4 shows training time versus time series length for Rocket, TS-CHIEF,
HIVE-COTE, and InceptionTime. The difference in training time between Rocket
and TS-CHIEF is substantial. Rocket takes approximately as long to train on
time series of length 2,048 as TS-CHIEF takes for time series of length 32, and is
approximately three orders of magnitude faster for the longest time series length.

Rocket is considerably faster than InceptionTime as well. However, fun-
damental scalability is likely to be similar, given that both InceptionTime and
Rocket are based on convolutional architectures.

Other methods. The scalability of Rocket, cBOSS, and catch22 in terms of time
series length appears to be similar—approximately linear in time series length
(see Appendix E). MrSEQL and MiSTiCl are less scalable. MrSEQL, cBOSS, and
MiSTiCl are all slower than Rocket for a given time series length.

4.3 Sensitivity Analysis

We explore the effect of different kernel parameters on classification accuracy.
We compare the accuracy of the default configuration (i.e., using the parameters
specified in section 3) against different choices for the number of kernels, length,

18 Angus Dempster et al.

25 26 27 28 29 210 211

Time Series Length

1 second

10 seconds

1 minute 40 seconds

16 minutes 40 seconds

2 hours 47 minutes

1 day 3 hours 47 minutes

Rocket

TS-CHIEF
HIVE-COTE

InceptionTime

Training Time vs Time Series Length

Fig. 4 Training time versus time series length.

weights and bias, dilation, padding, and output features. (As noted above, the
default kernel parameters form an intrinsic part of Rocket and do not need be
‘tuned’ for new datasets.) In each case, only the given parameter (e.g., length) is
varied, keeping all other parameters fixed at their default values. The comparison
is made on the ‘development’ datasets. The results are mean results over 10 runs,
using a different set of random kernels per run.

In most cases, alternative configurations represent a relatively subtle change
from the default configuration. Unsurprisingly, therefore, in many cases one or
more alternative choices for the relevant parameter produces similar accuracy to
the baseline configuration. In other words, Rocket is relatively robust to differ-
ent choices for many parameters. However, it is clear that dilation and ppv, in
particular, are two key aspects of the performance of the method.

4.3.1 Number of Kernels

We evaluate increasing numbers of kernels between 10 and 100,000. Figure 5 shows
the effect of the number of kernels, k, on accuracy. Clearly, increasing the number
of kernels improves accuracy. However, the actual difference in accuracy between,
for example, k = 5,000 and k = 10,000, is relatively small. Indeed, k = 5,000
produces higher accuracy on some datasets (Figure 17, Appendix C). Nevertheless,
k = 10,000 is noticeably ahead in terms of win/draw/loss (24/5/11).

Even though Rocket is nondeterministic, the variability in accuracy is rea-
sonably low for large numbers of kernels. Unsurprisingly, standard deviation in
accuracy diminishes as k increases. The median standard deviation across the 40
‘development’ datasets is 0.0037 for k = 10,000, and 0.0019 for k = 100,000.

4.3.2 Kernel Length

We vary kernel length, comparing the baseline (selecting length randomly from
{7, 9, 11}) to:

– fixed lengths of 3, 5, 7, 9, 11, 13, and 15; and

ROCKET: Exceptionally fast and accurate time series classification 19

123456789

10
50

100
500

1,000
 5,000
 10,000 (default)
 50,000
100,000

10 100 1,000 10,000 100,000
Number of Kernels (k)

0.000

0.025

0.050

0.075

0.100

St
an

da
rd

 D
ev

ia
tio

n

Fig. 5 Mean ranks (left), and variance in accuracy (right), versus k.

123456789101112

3
15

{3, 5, 7}
5

13
{11, 13, 15} 7

11
{9, 11, 13}
9
{5, 7, 9}
{7, 9, 11} (default)

Fig. 6 Mean ranks for different choices in terms of kernel length.

123

uniform
integer

normal (default)

Fig. 7 Mean ranks for different choices in terms of the sampling distribution for the weights.

– selecting length randomly from {3, 5, 7}, {5, 7, 9}, {9, 11, 13}, and {11, 13, 15}.

Figure 6 shows the effect of these choices on accuracy. Fixed lengths of 7, 9,
and 11, as well as selecting length randomly from {5, 7, 9} and {9, 11, 13} result in
similar accuracy to the default configuration, and the differences are not statisti-
cally significant (see also Figure 18, Appendix C). Shorter kernels are undesirable,
as they are more likely to be highly correlated (bearing in mind that kernels of the
same length still have substantial variety in terms of, e.g., dilation), while longer
random kernels are less likely to ‘match’ patterns in the input, as longer kernels
will essentially just represent random noise.

4.3.3 Weights (Including Centering) and Bias

Weights. We vary the distribution from which the weights are sampled, comparing
the baseline (sampling from a normal distribution) to:

– sampling from a uniform distribution, ∀w ∈W , w ∼ U(−1, 1); and
– sampling integer weights uniformly from {−1, 0, 1}.

Figure 7 shows the effect of these choices on accuracy. While sampling from
a normal distribution produces higher accuracy, the actual difference in accuracy
is small and not statistically significant (see also Figure 19, Appendix C). While
it may seem surprising that weights sampled from only three integer values are
so effective, note that kernels are still mean centered by default and have random
bias, and there is still substantial variety in terms of length and dilation.

20 Angus Dempster et al.

123

never
random binary

always (default)

Fig. 8 Mean ranks for different choices in terms of centering.

123

0
normal

uniform (default)

Fig. 9 Mean ranks for different choices in terms of bias.

123

1
uniform

exponential (default)

Fig. 10 Mean ranks for different choices in terms of dilation.

Centering. We vary centering, comparing the baseline (always centering) against:

– never centering the kernel weights; and
– centering or not centering at random with equal probability.

Figure 8 shows the effect of these choices on accuracy. It is clear that centering
produces higher accuracy, but the difference between always centering and cen-
tering at random is very small and not statistically significant. Always centering,
however, is noticeably more accurate on some datasets (Figure 20, Appendix C).

Bias. We vary bias, comparing the baseline (using a uniform distribution) against:

– using zero bias; and
– sampling bias from a normal distribution, b ∼ N (0, 1).

Figure 9 shows the effect of these choices on accuracy. Using a bias term pro-
duces higher accuracy, but the difference between sampling bias from a uniform
distribution or a normal distribution is relatively small and not statistically sig-
nificant (see also Figure 21, Appendix C.)

4.3.4 Dilation

We vary dilation, comparing the baseline (sampling dilation on an exponential
scale) against:

– no dilation (i.e., a fixed dilation of one); and

– sampling dilation uniformly, d = bxc, x ∼ U(1,
linput−1
lkernel−1).

ROCKET: Exceptionally fast and accurate time series classification 21

1234

0
random uniform always

random binary (default)

Fig. 11 Mean ranks for different choices in terms of padding.

123

max
ppv

ppv + max (default) 0.0 0.2 0.4 0.6 0.8 1.0
max

0.0

0.2

0.4

0.6

0.8

1.0

pp
v

ppv is better here

max is better here

W D L
29 2 9

Fig. 12 Mean ranks (left), and relative accuracy (right), ppv and max. (‘W’, ‘D’, and ‘L’
signify ‘win’, ‘draw’, and ‘loss’.)

Figure 10 shows the effect of these choices in terms of accuracy. It is clear that
dilation is key to performance. Dilation produces obviously higher accuracy than
no dilation. Exponential dilation produces higher accuracy than uniform dilation
on most datasets (significantly higher on some datasets), and the difference is
statistically significant (see also Figure 22, Appendix C).

4.3.5 Padding

We vary padding, comparing the baseline (applying padding at random) against:

– always padding, such that the ‘middle’ element of a given kernel is centered on
the first element of the time series, p = ((lkernel − 1)× d)/2;

– sampling padding uniformly, p ∼ U(0, ((lkernel − 1)× d)/2); and
– never padding.

Figure 11 shows the effect of these choices on accuracy. Padding is superior
to not padding, but none of the differences are statistically significant. Different
choices produce very similar results (Figure 23, Appendix C).

4.3.6 Features

We evaluate the effect of using different output features, i.e., different features
produced by the convolution operation between each time series and each convo-
lutional kernel (see section 3.2). We compare the baseline, using both ppv and max,
against using only ppv, and only max. Figure 12 shows the effect of these choices
on accuracy. Note that ‘W’, ‘D’, and ‘L’ in Figure 12 signify ‘win’, ‘draw’, and
‘loss’. It is clear that using only ppv is superior to using only max: ppv produces
substantially higher classification accuracy for the majority of the ‘development’
datasets. In fact, the use of ppv has the single biggest effect on accuracy of all
the parameters. The combination of ppv and max is better again, although the

22 Angus Dempster et al.

difference between ppv and ppv plus max is small and not statistically significant
(see also Figure 24, Appendix C).

5 Conclusion

Convolutional kernels are a single, powerful instrument which can capture many of
the features used by existing methods for time series classification. We show that,
rather than learning kernel weights, a large number of random kernels—while
in isolation only approximating relevant patterns—in combination are extremely
effective for capturing discriminative patterns in time series.

Further, random kernels have very low computational requirements, making
learning and classification extremely fast. Our proposed method utilising random
convolutional kernels for the purposes of transforming and classifying time series,
Rocket, achieves state-of-the-art accuracy with a fraction of the computational
expense of existing state-of-the-art methods, and can scale to millions of time
series. We also show that Rocket is significantly more accurate and, with one
exception, fundamentally more scalable than several recently-proposed scalable
methods for time series classification.

Rocket makes key use of the proportion of positive values (or ppv) to sum-
marise the output of feature maps, allowing a classifier to weight the prevalence
of a pattern in a given time series. To our knowledge, ppv has not been used in
this way before. We find that this is substantially more effective than a simple
maximum as applied in a conventional max pooling operation. It is credible that
ppv would also be effective for other data types such as images.

In future work, we propose to explore feature selection for Rocket, the appli-
cation of Rocket to multivariate time series, the application of Rocket beyond
time series data, and the use of aspects of Rocket with learned kernels.

Acknowledgements This material is based upon work supported by an Australian Govern-
ment Research Training Program Scholarship; the Air Force Office of Scientific Research, Asian
Office of Aerospace Research and Development (AOARD) under award number FA2386–18–
1–4030; and the Australian Research Council under awards DE170100037 and DP190100017.
The authors would like to thank Professor Eamonn Keogh and all the people who have con-
tributed to the UCR time series classification archive. Figures showing the ranking of different
classifiers and variants of Rocket were produced using code from Ismail Fawaz et al. (2019a).

References

Bagnall A, Lines J, Bostrom A, Large J, Keogh E (2017) The great time series classification
bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining
and Knowledge Discovery 31(3):606–660

Bagnall A, Lines J, Vickers W, Keogh E (2019) The UEA & UCR time series classification
repository. http://www.timeseriesclassification.com

Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of generic convolutional and recur-
rent networks for sequence modeling. arXiv:1803.01271

Benavoli A, Corani G, Mangili F (2016) Should we really use post-hoc tests based on mean-
ranks? Journal of Machine Learning Research 17(5):1–10

Bengio Y, Courville A, Vincent P (2013) Representation learning: A review and new perspec-
tives. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8):1798–1828

http://www.timeseriesclassification.com

ROCKET: Exceptionally fast and accurate time series classification 23

Bostrom A, Bagnall A (2015) Binary shapelet transform for multiclass time series classification.
In: Madria S, Hara T (eds) Big Data Analytics and Knowledge Discovery, Springer, Cham,
pp 257–269

Bottou L, Curtis FE, Nocedal J (2018) Optimization methods for large-scale machine learning.
SIAM Review 60(2):223–311

Boureau YL, Ponce J, LeCun Y (2010) A theoretical analysis of feature pooling in visual
recognition. In: Fürnkranz J, Joachims T (eds) Proceedings of the 27th International
Conference on Machine Learning, Omnipress, USA, pp 111–118

Cox D, Pinto N (2011) Beyond simple features: A large-scale feature search approach to un-
constrained face recognition. In: Face and Gesture 2011, pp 8–15

Cui Z, Chen W, Chen Y (2016) Multi-scale convolutional neural networks for time series
classification. arXiv:1603.06995

Dau HA, Keogh E, Kamgar K, et al. (2018) UCR time series classification archive (briefing
document). https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Dau HA, Bagnall A, Kamgar K, Yeh CCM, Zhu Y, Gharghabi S, Ratanamahatana CA, Keogh
E (2019) The UCR time series archive. arXiv:1810.07758

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. Journal of Ma-
chine Learning Research 7:1–30

Dongarra J, Gates M, Haidar A, Kurzak J, Luszczek P, Tomov S, Yamazaki I (2018) The
singular value decomposition: Anatomy of optimizing an algorithm for extreme scale. SIAM
Review 60(4):808–865

Farahmand A, Pourazarm S, Nikovski D (2017) Random projection filter bank for time series
data. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett
R (eds) Advances in Neural Information Processing Systems 30, pp 6562–6572

Franceschi J, Dieuleveut A, Jaggi M (2019) Unsupervised scalable representation learning for
multivariate time series. In: Seventh International Conference on Learning Representations,
Learning from Limited Labeled Data Workshop

Garćıa S, Herrera F (2008) An extension on “statistical comparisons of classifiers over multiple
data sets” for all pairwise comparisons. Journal of Machine Learning Research 9:2677–2694

Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT Press, Cambridge, MA
Hills J, Lines J, Baranauskas E, Mapp J, Bagnall A (2014) Classification of time series by

shapelet transformation. Data Mining and Knowledge Discovery 28(4):851–881
Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller P (2019a) Deep learning for time

series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963
Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller P (2019b) Deep neural network

ensembles for time series classification. arXiv:1903.06602
Ismail Fawaz H, Lucas B, Forestier G, Pelletier C, Schmidt DF, Weber J, Webb GI, Idoumghar

L, Muller P, Petitjean F (2019c) InceptionTime: Finding AlexNet for time series classifi-
cation. arXiv:1909.04939

Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y (2009) What is the best multi-stage archi-
tecture for object recognition? In: 2009 IEEE 12th International Conference on Computer
Vision, pp 2146–2153

Jimenez A, Raj B (2019) Time signal classification using random convolutional features. In:
2019 IEEE International Conference on Acoustics, Speech and Signal Processing

Karlsson I, Papapetrou P, Boström H (2016) Generalized random shapelet forests. Data Mining
and Knowledge Discovery 30(5):1053–1085

Kingma DP, Ba JL (2015) Adam: A method for stochastic optimization. In: Third International
Conference on Learning Representations, arXiv:1412.6980

Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional
neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in
Neural Information Processing Systems 25, pp 1097–1105

Lam SK, Pitrou A, Seibert S (2015) Numba: A LLVM-based python JIT compiler. In: Pro-
ceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pp 1–6

Le Nguyen T, Gsponer S, Ilie I, O’Reillly M, Ifrim G (2019) Interpretable time series classi-
fication using linear models and multi-resolution multi-domain symbolic representations.
Data Mining and Knowledge Discovery 33(4):1183–1222

Lin M, Chen Q, Yan S (2014) Network in network. In: Second International Conference on
Learning Representations, arXiv:1312.4400

Lines J, Taylor S, Bagnall A (2018) Time series classification with HIVE-COTE: The hierar-
chical vote collective of transformation-based ensembles. ACM Transactions on Knowledge

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

24 Angus Dempster et al.

Discovery from Data 12(5):52:1–52:35
Lubba CH, Sethi SS, Knaute P, Schultz SR, Fulcher BD, Jones NS (2019) catch22: CAnonical

Time-series CHaracteristics. Data Mining and Knowledge Discovery 33(6):1821–1852
Lucas B, Shifaz A, Pelletier C, O’Neill L, Zaidi N, Goethals B, Petitjean F, Webb GI (2019)

Proximity Forest: an effective and scalable distance-based classifier for time series. Data
Mining and Knowledge Discovery 33(3):607–635

Middlehurst M, Vickers W, Bagnall A (2019) Scalable dictionary classifiers for time series clas-
sification. In: Yin H, Camacho D, Tino P, Tallón-Ballesteros AJ, Menezes R, Allmendinger
R (eds) Intelligent Data Engineering and Automated Learning, Springer, Cham, pp 11–19

Morrow A, Shankar V, Petersohn D, Joseph A, Recht B, Yosef N (2017) Convolutional kitchen
sinks for transcription factor binding site prediction. arXiv:1706.00125

Oquab M, Bottou L, Laptev I, Sivic J (2015) Is object localization for free? weakly-supervised
learning with convolutional neural networks. In: 2015 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp 685–694

Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L,
Lerer A (2017) Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop

Pedregosa F, Varoquaux G, Gramfort A, et al. (2011) Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12:2825–2830

Petitjean F, Inglada J, Gancarski P (2012) Satellite image time series analysis under time
warping. IEEE Transactions on Geoscience and Remote Sensing 50(8):3081–3095

Pinto N, Doukhan D, DiCarlo JJ, Cox DD (2009) A high-throughput screening approach to
discovering good forms of biologically inspired visual representation. PLOS Computational
Biology 5(11):1–12

Rahimi A, Recht B (2008) Random features for large-scale kernel machines. In: Platt JC,
Koller D, Singer Y, Roweis ST (eds) Advances in Neural Information Processing Systems
20, pp 1177–1184

Rahimi A, Recht B (2009) Weighted sums of random kitchen sinks: Replacing minimization
with randomization in learning. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds)
Advances in Neural Information Processing Systems 21, pp 1313–1320

Raza A, Kramer S (2019) Accelerating pattern-based time series classification: a linear time
and space string mining approach. Knowledge and Information Systems

Renard X, Rifqi M, Erray W, Detyniecki M (2015) Random-shapelet: An algorithm for fast
shapelet discovery. In: IEEE International Conference on Data Science and Advanced
Analytics, pp 1–10

Rifkin RM, Lippert RA (2007) Notes on regularized least squares. Tech. rep., MIT
Saxe A, Koh PW, Chen Z, Bhand M, Suresh B, Ng A (2011) On random weights and unsuper-

vised feature learning. In: Getoor L, Scheffer T (eds) Proceedings of the 28th International
Conference on Machine Learning, Omnipress, USA, pp 1089–1096

Schäfer P (2015) The BOSS is concerned with time series classification in the presence of noise.
Data Mining and Knowledge Discovery 29(6):1505–1530

Schäfer P, Leser U (2017) Fast and accurate time series classification with WEASEL. In:
Proceedings of the 2017 ACM Conference on Information and Knowledge Management,
pp 637–646

Shifaz A, Pelletier C, Petitjean F, Webb GI (2020) TS-CHIEF: A scalable and accurate forest
algorithm for time series classification. Data Mining and Knowledge Discovery

Wang Z, Yan W, Oates T (2017) Time series classification from scratch with deep neural
networks: A strong baseline. In: 2017 International Joint Conference on Neural Networks,
pp 1578–1585

Wistuba M, Grabocka J, Schmidt-Thieme L (2015) Ultra-fast shapelets for time series classi-
fication. arXiv:1503.05018

Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural
networks? In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ (eds)
Advances in Neural Information Processing Systems 27, pp 3320–3328

Yu F, Koltun V (2016) Multi-scale context aggregation by dilated convolutions. In: Fourth
International Conference on Learning Representations, arXiv:1511.07122

Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Fleet
D, Pajdla T, Schiele B, Tuytelaars T (eds) European Conference on Computer Vision,
Springer, Cham, pp 818–833

ROCKET: Exceptionally fast and accurate time series classification 25

Appendices

A Relative Accuracy

A.1 ‘Bake Off’ Datasets

0.0 0.2 0.4 0.6 0.8 1.0
ProximityForest

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

ProximityForest is better here

W D L
69 3 13

Rocket vs ProximityForest

0.0 0.2 0.4 0.6 0.8 1.0
BOSS

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

BOSS is better here

W D L
65 6 14

Rocket vs BOSS

0.0 0.2 0.4 0.6 0.8 1.0
ST

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

ST is better here

W D L
64 3 18

Rocket vs ST

0.0 0.2 0.4 0.6 0.8 1.0
ResNet

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

ResNet is better here

W D L
57 4 24

Rocket vs ResNet

0.0 0.2 0.4 0.6 0.8 1.0
HIVE-COTE

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

HIVE-COTE is better here

W D L
45 7 33

Rocket vs HIVE-COTE

0.0 0.2 0.4 0.6 0.8 1.0
InceptionTime

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

InceptionTime is better here

W D L
40 6 39

Rocket vs InceptionTime

0.0 0.2 0.4 0.6 0.8 1.0
TS-CHIEF

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

TS-CHIEF is better here

W D L
38 7 40

Rocket vs TS-CHIEF

Fig. 13 Relative accuracy of Rocket vs state-of-the-art classifiers on the ‘bake off’ datasets.

26 Angus Dempster et al.

A.2 Additional 2018 Datasets

0.0 0.2 0.4 0.6 0.8 1.0
ProximityForest

0.0

0.2

0.4

0.6

0.8

1.0
Ro

ck
et

Rocket is better here

ProximityForest is better here

W D L
32 1 10

Rocket vs ProximityForest

0.0 0.2 0.4 0.6 0.8 1.0
ResNet

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

ResNet is better here

W D L
31 0 12

Rocket vs ResNet

0.0 0.2 0.4 0.6 0.8 1.0
TS-CHIEF

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

TS-CHIEF is better here

W D L
23 3 17

Rocket vs TS-CHIEF

0.0 0.2 0.4 0.6 0.8 1.0
InceptionTime

0.0

0.2

0.4

0.6

0.8

1.0
Ro

ck
et

Rocket is better here

InceptionTime is better here

W D L
21 2 20

Rocket vs InceptionTime

Fig. 14 Relative accuracy of Rocket vs state-of-the-art classifiers, additional 2018 datasets.

ROCKET: Exceptionally fast and accurate time series classification 27

B ‘Development’ and ‘Holdout’ Datasets

12345678

BOSS
ST

ProximityForest
ResNet InceptionTime

HIVE-COTE
Rocket
TS-CHIEF

Fig. 15 Mean rank of Rocket versus state-of-the-art classifiers on the ‘holdout’ datasets.

12345678

BOSS
ProximityForest

ST
ResNet HIVE-COTE

TS-CHIEF
InceptionTime
Rocket

Fig. 16 Mean rank of Rocket vs state-of-the-art classifiers on the ‘development’ datasets.

28 Angus Dempster et al.

C Additional Plots for the Sensitivity Analysis

0.0 0.2 0.4 0.6 0.8 1.0
k = 5,000

0.0

0.2

0.4

0.6

0.8

1.0

k
=

10
,0

00

k = 10,000 is better here

k = 5,000 is better here

W D L
24 5 11

Fig. 17 Relative accuracy of k = 10,000 versus k = 5,000 on the ‘development’ datasets.

0.0 0.2 0.4 0.6 0.8 1.0
l {5, 7, 9}

0.0

0.2

0.4

0.6

0.8

1.0

l
 {

7,
 9

, 1
1}

l {7, 9, 11} is better here

l {5, 7, 9} is better here

W D L
19 6 15

Fig. 18 Relative accuracy of l ∈ {7, 9, 11} versus l ∈ {5, 7, 9} on the ‘development’ datasets.

ROCKET: Exceptionally fast and accurate time series classification 29

0.0 0.2 0.4 0.6 0.8 1.0
integer

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al

normal is better here

integer is better here

W D L
20 6 14

Fig. 19 Relative accuracy, normally-distributed vs integer weights, ‘development’ datasets.

0.0 0.2 0.4 0.6 0.8 1.0
random binary

0.0

0.2

0.4

0.6

0.8

1.0

al
wa

ys

always is better here

random binary is better here

W D L
23 3 14

Fig. 20 Relative accuracy of always vs random centering on the ‘development’ datasets.

0.0 0.2 0.4 0.6 0.8 1.0
normal

0.0

0.2

0.4

0.6

0.8

1.0

un
ifo

rm

uniform is better here

normal is better here

W D L
20 5 15

Fig. 21 Relative accuracy, uniformly versus normally-distributed bias, ‘development’ datasets.

30 Angus Dempster et al.

0.0 0.2 0.4 0.6 0.8 1.0
uniform

0.0

0.2

0.4

0.6

0.8

1.0

ex
po

ne
nt

ia
l

exponential is better here

uniform is better here

W D L
25 4 11

Fig. 22 Relative accuracy of exponential vs uniform dilation on the ‘development’ datasets.

0.0 0.2 0.4 0.6 0.8 1.0
always

0.0

0.2

0.4

0.6

0.8

1.0

ra
nd

om
bi

na
ry

random binary is better here

always is better here

W D L
19 4 17

Fig. 23 Relative accuracy of random versus always padding on the ‘development’ datasets.

0.0 0.2 0.4 0.6 0.8 1.0
ppv

0.0

0.2

0.4

0.6

0.8

1.0

pp
v

+
m

ax

ppv + max is better here

ppv is better here

W D L
20 4 16

Fig. 24 Relative accuracy of ppv and max versus only ppv on the ‘development’ datasets.

ROCKET: Exceptionally fast and accurate time series classification 31

D Resamples

We also evaluate Rocket on 10 resamples of both the ‘bake off’ and additional 2018 datasets,
using the same first 10 resamples (not including the original training/test split) as in Bagnall
et al. (2017). Figure 25 shows the mean rank of Rocket versus HIVE-COTE, TS-CHIEF,
Shapelet Transform, Proximity Forest and BOSS on the resampled ‘bake off’ datasets. Fig-
ure 27 shows the relative accuracy of Rocket and each of the other methods on the resampled
‘bake off’ datasets. The results for HIVE-COTE, Shapelet Transform, and BOSS are taken
from Bagnall et al. (2019). Figures 26 and 28 show the mean rank and relative accuracy
of Rocket versus Proximity Forest and TS-CHIEF for 10 resamples of the additional 2018
datasets (published results are not available for other methods for these resamples).

The results for the resamples and the original training/test splits are very similar for
both the ‘bake off’ and additional 2018 datasets. In fact, while HIVE-COTE ranks ahead of
Rocket, Rocket appears to be ‘stronger’ against both HIVE-COTE and TS-CHIEF on the
resamples of the ‘bake off’ datasets than on the original training/test splits. For the resampled
‘bake off’ datasets, Rocket is ahead of HIVE-COTE in terms of win/draw/loss (47/2/36), as
it is for the original training/test split (45/7/33). These results confirm that the results for
the original training/test split are sound, and representative of the expected performance of
Rocket relative to the other methods included in the comparison.

123456

BOSS
ProximityForest

ST TS-CHIEF
Rocket
HIVE-COTE

Fig. 25 Mean rank of Rocket vs other classifiers on the resampled ‘bake off’ datasets.

123

ProximityForest
TS-CHIEF

Rocket

Fig. 26 Mean rank of Rocket vs other classifiers, resampled additional 2018 datasets.

32 Angus Dempster et al.

0.0 0.2 0.4 0.6 0.8 1.0
ProximityForest

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

ProximityForest is better here

W D L
68 3 14

Rocket vs ProximityForest

0.0 0.2 0.4 0.6 0.8 1.0
BOSS

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

BOSS is better here

W D L
66 2 17

Rocket vs BOSS

0.0 0.2 0.4 0.6 0.8 1.0
ST

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

ST is better here

W D L
66 1 18

Rocket vs ST

0.0 0.2 0.4 0.6 0.8 1.0
HIVE-COTE

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

HIVE-COTE is better here

W D L
47 2 36

Rocket vs HIVE-COTE

0.0 0.2 0.4 0.6 0.8 1.0
TS-CHIEF

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

TS-CHIEF is better here

W D L
45 3 37

Rocket vs TS-CHIEF

Fig. 27 Relative accuracy of Rocket vs other classifiers on the resampled ‘bake off’ datasets.

0.0 0.2 0.4 0.6 0.8 1.0
ProximityForest

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

ProximityForest is better here

W D L
33 0 10

Rocket vs ProximityForest

0.0 0.2 0.4 0.6 0.8 1.0
TS-CHIEF

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

TS-CHIEF is better here

W D L
22 1 20

Rocket vs TS-CHIEF

Fig. 28 Relative accuracy of Rocket vs other classifiers, resampled additional 2018 datasets.

ROCKET: Exceptionally fast and accurate time series classification 33

E Other Methods

We also compare Rocket against four recently-proposed scalable methods for time series
classification (see section 2.2), namely, MrSEQL, cBOSS, MiSTiCl, and catch22. We have run
each of these four methods on the ‘bake off’ datasets, the additional 2018 datasets, and the
scalability experiments in terms of both training set size and time series length. We have
run each method with its recommended settings per the relevant papers, and using the same
experimental conditions as for Rocket in each case.

E.1 ‘Bake Off’ and Additional 2018 Datasets

Figures 29 and 32 show the mean rank and relative accuracy of Rocket versus MrSEQL,
cBOSS, MiSTiCl, and catch 22 for the 85 ‘bake off’ datasets. Figures 30 and 33 show the same
for the additional 2018 datasets. Figure 31 shows total compute time.

The results show that Rocket is significantly more accurate and, with one exception,
more scalable than these methods. Rocket is considerably ahead of the most accurate of
these methods, MrSEQL, in terms of win/draw/loss (54/8/23) on the ‘bake off’ datasets, and
Rocket is approximately an order of magnitude faster in terms of total compute time than
MrSEQL, cBOSS, and MiSTiCl. While catch22 is very fast, it is the least accurate method.

As for the ‘bake off’ datasets, Rocket is significantly more accurate than MrSEQL, cBOSS,
MiSTiCl, or catch22 on the additional 2018 datasets and, with the exception of catch22, con-
siderably faster. Again, Rocket is substantially ahead of the most accurate of these methods
in terms of win/draw/loss (32/0/11). Rocket is 4 times faster than cBOSS, 16 times faster
than MrSEQL, and almost 22 times faster than MiSTiCl on these datasets. Again, catch22 is
the fastest but least accurate method.

Note that while catch22 was originally used in conjunction with a single decision tree, we
found that this produced very low accuracy and, of several ‘off the shelf’ classifiers, random
forest produced the highest accuracy. Accordingly, we have used catch22 in conjunction with a
random forest classifier. MiSTiCl would not run on the ElectricDevices dataset in its published
configuration. For this dataset we used MiSTiCl in conjunction with AdaBoost, rather than the
default extremely randomised trees. MiSTiCl would not run at all on the Chinatown dataset,
so it has been ranked behind the other methods for this dataset, and this dataset has been
removed from the relevant plot in Figure 33.

12345

catch22
MiSTiCl
cBOSS

MrSEQL
Rocket

Fig. 29 Mean rank of Rocket vs other classifiers on the ‘bake off’ datasets.

12345

catch22
MiSTiCl
cBOSS

MrSEQL
Rocket

Fig. 30 Mean rank of Rocket vs other classifiers, additional 2018 datasets.

34 Angus Dempster et al.

catch22 Rocket cBOSS MiSTiCl MrSEQL

8 Minutes
1 Hour 39 Minutes

19 Hours 33 Minutes
20 Hours 15 Minutes

23 Hours 40 Minutes

catch22 Rocket cBOSS MrSEQL MiSTiCl

3 Minutes
40 Minutes

2 Hours 36 Minutes

10 Hours 48 Minutes

14 Hours 27 Minutes

Fig. 31 Total compute time for ‘bake off’ datasets (left) and additional 2018 datasets (right).

0.0 0.2 0.4 0.6 0.8 1.0
catch22

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

catch22 is better here

W D L
78 1 6

Rocket vs catch22

0.0 0.2 0.4 0.6 0.8 1.0
MiSTiCl

0.0

0.2

0.4

0.6

0.8

1.0
Ro

ck
et

Rocket is better here

MiSTiCl is better here

W D L
67 3 15

Rocket vs MiSTiCl

0.0 0.2 0.4 0.6 0.8 1.0
cBOSS

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

cBOSS is better here

W D L
64 6 15

Rocket vs cBOSS

0.0 0.2 0.4 0.6 0.8 1.0
MrSEQL

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

MrSEQL is better here

W D L
54 8 23

Rocket vs MrSEQL

Fig. 32 Relative accuracy of Rocket vs other classifiers on the ‘bake off’ datasets.

E.2 Scalability

E.2.1 Training Set Size

Figure 34 shows accuracy and training time versus training set size for Rocket—with 10,000
(default), 1,000 and 100 kernels—and the other four methods for the Satellite Image Time
Series Dataset. Figure 34 shows that MrSEQL, cBOSS, and MiSTiCl are all fundamentally less
scalable than Rocket in terms of training set size. By approximately 32,000 training examples,
MrSEQL is approximately 75 times slower than Rocket, MiSTiCl is approximately 200 times
slower than Rocket, and cBOSS is more than 300 times slower than Rocket. Additionally,
all four methods are noticeably less accurate than Rocket for the same training set size. We
note that there appears to be a problem with MrSEQL with more than approximately 8,000
training examples. While slower than catch22 with its default settings (i.e., 10,000 kernels), in
contexts where this speed difference is important, restricted to 100 kernels Rocket is an order
of magnitude faster than catch22 and still significantly more accurate (see Figure 34).

ROCKET: Exceptionally fast and accurate time series classification 35

0.0 0.2 0.4 0.6 0.8 1.0
catch22

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

catch22 is better here

W D L
40 0 3

Rocket vs catch22

0.0 0.2 0.4 0.6 0.8 1.0
MiSTiCl

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

MiSTiCl is better here

W D L
35 1 6

Rocket vs MiSTiCl*

0.0 0.2 0.4 0.6 0.8 1.0
cBOSS

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

cBOSS is better here

W D L
33 0 10

Rocket vs cBOSS

0.0 0.2 0.4 0.6 0.8 1.0
MrSEQL

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

MrSEQL is better here

W D L
32 0 11

Rocket vs MrSEQL

Fig. 33 Relative accuracy of Rocket vs other classifiers, additional 2018 datasets.

E.2.2 Time Series Length

Figure 35 shows training time versus time series length for Rocket versus the other four meth-
ods for the InlineSkate dataset. Figure 35 shows that, in practice, the scalability of Rocket,
cBOSS, and catch22 in terms of time series length appears to be similar—that is, approxi-
mately linear in time series length. Both MrSEQL and MiSTiCl are less scalable. MrSEQL,
cBOSS, and MiSTiCl are all slower than Rocket for a given time series length.

28 210 212 214 216 218 220

Training Set Size

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

Accuracy vs Training Set Size

Rocket_10K
Rocket_1K
Rocket_100
MrSEQL
cBOSS
MiSTiCl
catch22

28 210 212 214 216 218 220

Training Set Size

0.36 seconds

3.6 seconds

36 seconds

6 minutes

1 hour

10 hours

Rocket_10K

Rocket_1K

Rocket_100

MrSEQL

cBOSS
MiSTiCl

catch
22

Training Time vs Training Set Size

Fig. 34 Accuracy (left) and training time (right) versus training set size.

36 Angus Dempster et al.

25 26 27 28 29 210 211

Time Series Length

1 second

10 seconds

1 minute 40 seconds

16 minutes 40 seconds

Rocket

MrSEQL

cBOSS

MiSTiCl

catch22

Training Time vs Time Series Length

Fig. 35 Training time versus time series length.

ROCKET: Exceptionally fast and accurate time series classification 37

F Results for ‘Bake Off’ Datasets

The ‘development’ datasets are marked with an asterisk.

Table 1: Accuracy—‘Bake Off’ Datasets

Rocket PF BOSS ST ResNet HCTE ITime CHIEF

Adiac 0.7834 0.7340 0.7647 0.7826 0.8289 0.8107 0.8363 0.7980
ArrowHead 0.8143 0.8754 0.8343 0.7371 0.8446 0.8629 0.8286 0.8229
*Beef 0.8333 0.7200 0.8000 0.9000 0.7533 0.9333 0.7000 0.7333
BeetleFly 0.9000 0.8750 0.9000 0.9000 0.8500 0.9500 0.8500 0.9500
*BirdChicken 0.9000 0.8650 0.9500 0.8000 0.8850 0.8500 0.9500 0.9000
CBF 1.0000 0.9933 0.9978 0.9744 0.9950 0.9989 0.9989 0.9978
*Car 0.8467 0.8467 0.8333 0.9167 0.9250 0.8667 0.9000 0.8500
ChlCon 0.8145 0.6339 0.6609 0.6997 0.8436 0.7120 0.8753 0.7206
CinCECGTorso 0.8362 0.9343 0.8870 0.9543 0.8261 0.9964 0.8514 0.9826
Coffee 1.0000 1.0000 1.0000 0.9643 1.0000 1.0000 1.0000 1.0000
Computers 0.7612 0.6444 0.7560 0.7360 0.8148 0.7600 0.8120 0.7120
*CricketX 0.8195 0.8021 0.7359 0.7718 0.7913 0.8231 0.8667 0.7974
*CricketY 0.8523 0.7938 0.7538 0.7795 0.8033 0.8487 0.8513 0.8026
*CricketZ 0.8559 0.8010 0.7462 0.7872 0.8115 0.8308 0.8590 0.8359
DiaSizRed 0.9699 0.9657 0.9314 0.9248 0.3013 0.9412 0.9314 0.9771
DisPhaOutAgeGro 0.7590 0.7309 0.7482 0.7698 0.7165 0.7626 0.7266 0.7410
DisPhaOutCor 0.7696 0.7928 0.7283 0.7754 0.7710 0.7717 0.7935 0.7862
*DisPhaTW 0.7187 0.6597 0.6763 0.6619 0.6647 0.6835 0.6763 0.6835
ECG200 0.9060 0.9090 0.8700 0.8300 0.8740 0.8500 0.9100 0.8600
*ECG5000 0.9472 0.9365 0.9413 0.9438 0.9342 0.9462 0.9409 0.9458
ECGFiveDays 1.0000 0.8492 1.0000 0.9837 0.9748 1.0000 1.0000 1.0000
Earthquakes 0.7482 0.7540 0.7482 0.7410 0.7115 0.7482 0.7410 0.7482
ElectricDevices 0.7294 0.7060 0.7992 0.7470 0.7291 0.7703 0.7227 0.7524
FaceAll 0.9465 0.8938 0.7817 0.7787 0.8388 0.8030 0.8041 0.8426
FaceFour 0.9773 0.9739 1.0000 0.8523 0.9545 0.9545 0.9659 1.0000
FacesUCR 0.9614 0.9459 0.9571 0.9059 0.9547 0.9629 0.9732 0.9649
*FiftyWords 0.8303 0.8314 0.7055 0.7055 0.7396 0.8088 0.8418 0.8462
*Fish 0.9794 0.9349 0.9886 0.9886 0.9794 0.9886 0.9829 0.9943
*FordA 0.9444 0.8546 0.9295 0.9712 0.9205 0.9644 0.9483 0.9470
*FordB 0.8051 0.7149 0.7111 0.8074 0.9131 0.8235 0.9365 0.8321
GunPoint 1.0000 0.9973 1.0000 1.0000 0.9907 1.0000 1.0000 1.0000
Ham 0.7257 0.6600 0.6667 0.6857 0.7571 0.6667 0.7143 0.7143
HandOutlines 0.9424 0.9214 0.9027 0.9324 0.9111 0.9324 0.9595 0.9297
*Haptics 0.5240 0.4445 0.4610 0.5227 0.5188 0.5195 0.5682 0.5162
*Herring 0.6922 0.5797 0.5469 0.6719 0.6188 0.6875 0.7031 0.5781
InlineSkate 0.4569 0.5418 0.5164 0.3727 0.3731 0.5000 0.4855 0.5364
*InsWinSou 0.6568 0.6187 0.5232 0.6268 0.5065 0.6551 0.6348 0.6465
*ItaPowDem 0.9696 0.9671 0.9086 0.9475 0.9630 0.9631 0.9679 0.9718
*LarKitApp 0.9005 0.7819 0.7653 0.8587 0.8997 0.8640 0.9067 0.7893
Lightning2 0.7590 0.8656 0.8361 0.7377 0.7705 0.8197 0.8033 0.7705
*Lightning7 0.8233 0.8219 0.6849 0.7260 0.8452 0.7397 0.8082 0.7534
Mallat 0.9559 0.9576 0.9382 0.9642 0.9716 0.9620 0.9629 0.9774
*Meat 0.9483 0.9333 0.9000 0.8500 0.9683 0.9333 0.9500 0.9000
*MedicalImages 0.7995 0.7582 0.7184 0.6697 0.7703 0.7776 0.7987 0.7974
*MidPhaOutAgeGro 0.5903 0.5623 0.5455 0.6429 0.5688 0.5974 0.5325 0.5909
*MidPhaOutCor 0.8385 0.8364 0.7801 0.7938 0.8089 0.8316 0.8351 0.8522
MiddlePhalanxTW 0.5604 0.5292 0.5455 0.5195 0.4844 0.5714 0.5130 0.5584
MoteStrain 0.9146 0.9024 0.8786 0.8970 0.9276 0.9329 0.9034 0.9441
NonInvFetECGTho1 0.9530 0.9066 0.8382 0.9496 0.9454 0.9303 0.9623 0.9074
NonInvFetECGTho2 0.9691 0.9399 0.9008 0.9511 0.9461 0.9445 0.9674 0.9445
*OSULeaf 0.9409 0.8273 0.9545 0.9669 0.9785 0.9793 0.9339 0.9876
*OliveOil 0.9167 0.8667 0.8667 0.9000 0.8300 0.9000 0.8667 0.9000

38 Angus Dempster et al.

Table 1: Accuracy—‘Bake Off’ Datasets

Rocket PF BOSS ST ResNet HCTE ITime CHIEF

PhaOutCor 0.8343 0.8235 0.7716 0.7634 0.8390 0.8065 0.8543 0.8485
*Phoneme 0.2799 0.3201 0.2648 0.3207 0.3343 0.3824 0.3354 0.3608
*Plane 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ProPhaOutAgeGro 0.8556 0.8463 0.8341 0.8439 0.8532 0.8585 0.8537 0.8488
*ProPhaOutCor 0.8990 0.8732 0.8488 0.8832 0.9213 0.8797 0.9313 0.8969
*ProPhaTW 0.8166 0.7790 0.8000 0.8049 0.7805 0.8146 0.7756 0.8146
RefDev 0.5373 0.5323 0.4987 0.5813 0.5253 0.5573 0.5093 0.5387
*ScreenType 0.4853 0.4552 0.4640 0.5200 0.6216 0.5893 0.5760 0.5040
*ShapeletSim 1.0000 0.7761 1.0000 0.9556 0.7794 1.0000 0.9889 1.0000
ShapesAll 0.9068 0.8858 0.9083 0.8417 0.9213 0.9050 0.9250 0.9300
SmaKitApp 0.8184 0.7443 0.7253 0.7920 0.7861 0.8533 0.7787 0.8160
SonAIBORobSur1 0.9225 0.8458 0.6323 0.8436 0.9581 0.7654 0.8835 0.8270
SonAIBORobSur2 0.9126 0.8963 0.8594 0.9339 0.9778 0.9276 0.9528 0.9286
StarLightCurves 0.9810 0.9813 0.9778 0.9785 0.9718 0.9815 0.9792 0.9820
*Strawberry 0.9814 0.9684 0.9757 0.9622 0.9805 0.9703 0.9838 0.9676
*SwedishLeaf 0.9640 0.9466 0.9216 0.9280 0.9563 0.9536 0.9712 0.9664
Symbols 0.9743 0.9616 0.9668 0.8824 0.9064 0.9739 0.9819 0.9799
*SynCon 0.9997 0.9953 0.9667 0.9833 0.9983 0.9967 0.9967 1.0000
*ToeSeg1 0.9684 0.9246 0.9386 0.9649 0.9627 0.9825 0.9693 0.9693
ToeSeg2 0.9238 0.8623 0.9615 0.9077 0.9062 0.9538 0.9385 0.9538
*Trace 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
TwoLeadECG 0.9991 0.9886 0.9807 0.9974 1.0000 0.9965 0.9956 0.9965
TwoPatterns 1.0000 0.9996 0.9930 0.9550 0.9999 1.0000 1.0000 1.0000
UWavGesLibAll 0.9754 0.9723 0.9389 0.9422 0.8595 0.9685 0.9545 0.9687
UWavGesLibX 0.8547 0.8286 0.7621 0.8029 0.7805 0.8398 0.8247 0.8417
*UWavGesLibY 0.7740 0.7615 0.6851 0.7303 0.6701 0.7655 0.7688 0.7716
UWavGesLibZ 0.7919 0.7640 0.6949 0.7485 0.7501 0.7831 0.7697 0.7797
*Wafer 0.9982 0.9955 0.9948 1.0000 0.9986 0.9994 0.9987 0.9989
Wine 0.8130 0.5685 0.7407 0.7963 0.7444 0.7778 0.6667 0.8889
*WordSynonyms 0.7534 0.7787 0.6379 0.5705 0.6224 0.7382 0.7555 0.7868
*Worms 0.7403 0.7182 0.5584 0.7403 0.7909 0.5584 0.8052 0.7922
WormsTwoClass 0.7974 0.7844 0.8312 0.8312 0.7468 0.7792 0.7922 0.8182
*Yoga 0.9104 0.8786 0.9183 0.8177 0.8702 0.9177 0.9057 0.8483

ROCKET: Exceptionally fast and accurate time series classification 39

G Results for Additional 2018 Datasets

Table 2: Accuracy—Additional 2018 Datasets

Rocket PF ResNet CHIEF ITime

ACSF1 0.8860 0.7060 0.9160 0.8600 0.9200
AllGesWiiX 0.7900 0.7804 0.7406 0.7820 0.7900
AllGesWiiY 0.7727 0.7834 0.7937 0.7651 0.8329
AllGesWiiZ 0.7661 0.6956 0.7257 0.7020 0.8114
BME 1.0000 1.0000 0.9987 1.0000 0.9933
Chinatown 0.9825 0.9738 0.9784 0.9816 0.9854
Crop 0.7513 0.7336 0.7429 0.7412 0.7722
DodgerLoopDay 0.5725 0.6800 0.1500 0.6138 0.1500
DodgerLoopGame 0.8732 0.9101 0.7101 0.9167 0.8551
DodLooWee 0.9746 0.9855 0.9522 0.9783 0.9710
EOGHorSig 0.6390 0.6210 0.5994 0.6439 0.5939
EOGVerSig 0.5414 0.5348 0.4453 0.5307 0.4751
EthanolLevel 0.5828 0.2970 0.7584 0.5656 0.8140
FreRegTra 0.9976 0.9363 0.9985 0.9980 0.9965
FreSmaTra 0.9496 0.7091 0.8322 0.9980 0.8674
Fungi 1.0000 0.9527 0.1774 1.0000 1.0000
GestureMidAirD1 0.7169 0.6723 0.6985 0.7038 0.7462
GestureMidAirD2 0.6608 0.6423 0.6677 0.6823 0.7308
GestureMidAirD3 0.4146 0.3969 0.3400 0.4046 0.4000
GesturePebbleZ1 0.9058 0.8983 0.9012 0.8866 0.9244
GesturePebbleZ2 0.8304 0.8551 0.7772 0.8209 0.8861
GunPointAgeSpan 0.9968 0.9959 0.9968 0.9946 0.9873
GunPoiMalVerFem 0.9984 0.9949 0.9924 0.9937 0.9937
GunPoiOldVerYou 0.9911 0.9832 0.9892 0.9749 0.9651
HouseTwenty 0.9639 0.9378 0.9832 0.9765 0.9748
InsEPGRegTra 1.0000 0.9703 0.9976 1.0000 1.0000
InsEPGSmaTra 0.9791 0.8703 0.3719 0.9715 0.9438
MelPed 0.9044 0.8813 0.9092 0.8817 0.9139
MixShaRegTra 0.9711 0.9624 0.9729 0.9684 0.9703
MixShaSmaTra 0.9382 0.9277 0.9165 0.9528 0.9146
PLAID 0.9026 0.8624 0.9404 0.9177 0.9441
PicGesWiiZ 0.8300 0.7120 0.7040 0.7600 0.7600
PigAirPre 0.0952 0.1793 0.4058 0.8880 0.5433
PigArtPressure 0.9538 0.6029 0.9913 0.9812 0.9952
PigCVP 0.9341 0.4418 0.9183 0.9678 0.9615
PowerCons 0.9400 0.9417 0.8789 0.9389 0.9444
Rock 0.9000 0.8660 0.5520 0.9220 0.8000
SemHanGenCh2 0.9268 0.9240 0.8237 0.8715 0.8167
SemHanMovCh2 0.6451 0.7778 0.4391 0.7624 0.4822
SemHanSubCh2 0.8811 0.9273 0.7387 0.9236 0.8244
ShaGesWiiZ 0.8980 0.8900 0.8800 0.8660 0.9000
SmoothSubspace 0.9787 1.0000 0.9800 1.0000 0.9933
UMD 0.9924 0.9903 0.9903 0.9889 0.9861

	Introduction
	Related Work
	Method
	Experiments
	Conclusion
	Relative Accuracy
	`Development' and `Holdout' Datasets
	Additional Plots for the Sensitivity Analysis
	Resamples
	Other Methods
	Results for `Bake Off' Datasets
	Results for Additional 2018 Datasets

