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Abstract

Objective. Surgery is one of the riskiest and most important medical acts that
is performed today. Understanding the ways in which surgeries are similar or
different from each other is of major interest to understand and analyze surgical
behaviors. This article addresses the issue of identifying discriminative patterns
of surgical practice from recordings of surgeries. These recordings are sequences
of low-level surgical activities representing the actions performed by surgeons
during surgeries.
Material and Method. To discover patterns that are specific to a group of
surgeries, we use the Vector Space Model (VSM) which is originally an algebraic
model for representing text documents. We split long sequences of surgical
activities into subsequences of consecutive activities. We then compute the
relative frequencies of these subsequences using the tf∗idf framework and we use
the Cosine similarity to classify the sequences. This process makes it possible to
discover which patterns discriminate one set of surgeries recordings from another
set.
Results. Experiments were performed on 40 neurosurgeries of anterior cervical
discectomy (ACD). The results demonstrate that our method accurately identi-
fies patterns that can discriminate between (1) locations where the surgery took
place, (2) levels of expertise of surgeons (i.e., expert vs. intermediate) and even
(3) individual surgeons who performed the intervention. We also show how the
tf∗idf weight vector can be used to both visualize the most interesting patterns
and to highlight the parts of a given surgery that are the most interesting.
Conclusions. Identifying patterns that discriminate groups of surgeon is a
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very important step in improving the understanding of surgical processes. The
proposed method finds discriminative and interpretable patterns in sequences
of surgical activities. Our approach provides intuitive results, as it identifies
automatically the set of patterns explaining the differences between the groups.

Keywords: Temporal Analysis, Vector Space Model, Bag of Words, Surgical
Process Modelling, Surgical Technical Skills, Surgery

1. Introduction

More than half a million surgeries are performed every day worldwide [1],
which makes surgery one of the most important component of global health care.
Competing demands are motivating a better understanding of surgical processes,
including: surgical procedures are getting more complex [2], residents now have5

to be trained while performing less procedures [3], the surgical interventions
need increasingly thorough justification [4] and the costs have to be reduced
[5]. A better understanding of surgical practices is key to addressing these
issues. Surgical Process Modelling (SPM) [6] is the general process that aims
at understanding surgeries, in order to improve the quality of care and the10

training of surgeons. SPM is part of surgical data science [7], which targets
the development of data-driven methods to support surgery. SPM traditionally
considers surgeries as sequences of activities that are performed by the surgeon
over the course of the surgery.

Previous work on the analysis of surgeries considered the comparison of entire15

sequences of surgical activities. For example, Forestier et al. [8] used Dynamic
Time Warping (DTW) as a dissimilarity measure between sequences of surgical
activities. This measure was used to create groups of similar surgeries and made
it possible to cluster surgeons according to their expertise. This approach was
later used in [9] to perform a multi-site study comparing the surgical behaviors20

in France, Germany and Canada. This study revealed differences in surgical
practice depending on the expertise of the surgeon and the location where the
surgery took place. Forestier et al. [10] also proposed Non-Linear Temporal
Scaling (NTLS), a new approach for realigning a set of surgeries on the same
timeline. This method calculates an average surgery that is used as a reference25

for the realignment. Using the realigned sequences, NTLS offers a visualization
that makes it possible to understand the differences and common parts in a set
of surgeries. Neumuth et al. [11] also investigated different similarity metrics
for surgical process models. Five different similarity metrics were compared
with the objective to deal with several dimensions of process compliance in30

surgery, including granularity, content, time, order, and frequency of surgical
activities. These approaches have limitations because of their global approach:
any unusual event in a given surgery has to be matched to the element of another
surgery, which make these methods sensitive to noise. They are also difficult to
understand because the only explanation about the prediction that they provide35

is the most similar surgery that was found in the database; as surgeries are
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complex processes, this is often not informative enough to understand the why
of the predictions. Furthermore, existing approaches have been mostly used
to evaluate similarities between surgeries and not for finding and describing
important differences between them.40

In this article, we address the issue of identifying discriminative patterns
from recordings of surgeries in order to better understand surgical practice.
These recordings are sequences of low-level surgical activities representing the
actions performed by surgeons during surgeries. Our objective is to analyze
these recordings to find discriminative patterns that characterize specific be-45

havior of a group of surgeries over a baseline. Identifying patterns that separate
groups of surgeries is a very important step in improving the understanding of
surgical processes. It makes possible to easily explain the main differences in
the way multiple surgeries were performed: e.g. what makes the behavior of
senior surgeons unique compared to junior surgeons, or what makes the behav-50

ior of French surgeons different from the one of German surgeons. Comparing
the practice of surgeons according to their experience is of major interest from
a teaching perspective [12].

The rest of the paper is organized as follows: Section 2 presents our method
to find discriminative patterns using a sliding window technique in conjunction55

with the Vector Space Model (VSM). Section 3 presents the assessment of our
method on a dataset composed of 40 neuro-surgeries of anterior cervical discec-
tomy (ACD) surgeries. Finally, we discuss the results in Section 4 as well as the
advantages and drawbacks of our method. Section 5 concludes the paper.

2. Method60

2.1. Surgeries as sequences of activities

We consider surgeries as sequences of activities that are performed by a
surgeon during an intervention. Mehta et al. [13] proposed to represent surgical
activities as triplet composed of an action, an anatomical structure and an
instrument. For example, the surgeon can cut the skin using a scalpel with65

his/her right hand. In this paper, we use this formalization which was introduced
in [8].

Let S = {S1, · · · , SN} be the a set of surgeries. A surgery S can be modeled
as a sequence of surgical activities S =< a1, ..., an > where ai denotes the ith

activity. An activity ai belongs to A, the set of all possible activities, and has70

a start time and a stop time within the time-line of the surgery. In general,
activities that are performed by both hands are recorded, as well as the use of
the microscope. In this paper, we focus on the activities that were performed by
the right hand (i.e., the dominant hand in our dataset), as previous studies [8]
showed that they are the activities that carry the most important information.75

Figure 1 illustrates one sequence of activities, where each activity is in a different
color.

Given multiple sets of surgeries ({S1 · · · SN}) our goal is to find subsequences
of activities that are specific to each set. These sets are defined according to
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time

dissect skin scissors
cut skin scalpel hold muscle retractors

install muscle retractors

Figure 1: Illustration of one surgery recording as a sequence of surgical activities.

the targeted application, for example by regrouping surgeries performed in the80

same location or performed by surgeons having the same level of expertise (e.g.,
junior or senior). The subsequences are expected to be present in most of the
sequences of a given set and absent from the other sets. The underlying idea is
to discover what makes a set of surgeries unique compared to other surgeries.

2.2. Proposed method85

The proposed method starts by splitting sequences into subsequences of
consecutive activities. It then computes the relative frequencies of these sub-
sequences, i.e., the number of times they appear in a given sequence and in a
set of sequences. We extract these subsequences from a set of surgeries, and
use their relative frequencies to find discriminative patterns that characterize90

specific behavior of a group of surgeries over another.
To discover the patterns that are specific to a group of surgeries, we use

the VSM [14] framework which is originally an algebraic model for representing
text documents. Using this paradigm, the subsequences extracted from a set
of surgeries are interpreted as a single bag of words, where words here repre-95

sent subsequences of surgical activities. Bags of words are extracted from the
sequences of surgical activities using a sliding window. We then use the well-
know tf∗idf weighting scheme [14], which ranks patterns based on their relative
frequencies. This weighting scheme makes it possible to discard patterns that
are frequent across all classes/groups; the idea being that even if a pattern is100

frequent, if it is so in all groups, then it will not be discriminant. We can then
analyze these patterns to better understand the specificities of a set of surgeries
over another; for example identify subsequences that are only present in a given
set of surgeries. We can then also reproject these patterns over the sequences
themselves to outline portions that are more or less characteristic of one class.105

Finally, we show that these patterns can also be used to predict: we transform
the “query surgery” into its VSM representation and predict if its bag of words
resemble more to one group of surgeries or another (typically using the cosine
similarity). The classification process is able to average out the subsequences
that are common to most surgeries, in order to focus on the most discriminant110

ones.

2.3. Vector Space Model

We use the vector space model exactly as it is known in Information Retrieval
(IR) [14, 15]. The tf∗idf weight for a term t is defined as a product of two factors:
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term frequency (tf ) and inverse document frequency (idf ). For the first factor,115

we use logarithmically scaled term frequency [16]:

tft,d =

{
log(1 + ft,d), if ft,d > 0

0, otherwise
(1)

where t is the term, d is a bag of words (a document in IR terms), and ft,d is
a frequency of the term in a bag. The inverse document frequency we compute
as usual [16]:

idft,D = log
|D|

|d ∈ D : t ∈ d|
= log

N

dft
(2)

where N is the cardinality of a corpus D (the total number of classes) and120

the denominator dft is a number of bags where the term t appears. Then, tf∗idf
weight value for a term t in the bag d of a corpus D is defined as

tf∗idf(t, d,D) = tft,d × idft,D = log(1 + ft,d) · log
N

dft
(3)

for all cases where ft,d > 0 and dft > 0, or zero otherwise.
Once all frequency values are computed, the term frequency matrix becomes

the term weight matrix, whose columns used as class term weight vectors that125

facilitate the classification using Cosine similarity. For two vectors a and b
Cosine similarity is based on their inner product and defined as

similarity(a,b) = cos(θ) =
a · b
||a|| · ||b||

(4)

2.4. Vector Space Model for surgeries analysis

The first step to apply tf∗idf scheme to sequences of surgical activities is to
convert them into bags of words. The sliding window size (w) is a parameter of130

this step. It defines the length of the words that will be present in the bags. In
our case, this corresponds to considering sets of w consecutive surgical activities.
Figure 2 illustrates the computation of the subsequences using an overlapping
sliding window of size 5 (w = 5). The influence of the size of the sliding window
will be discussed in Section 3.2. This process is performed for all of the N135

sets that will be used in the analysis (e.g., set of junior surgeries, set of senior
surgeries, etc.) leading to N bags (i.e., one per group). This technique was
previously used in activity recognition from video [17, 18] where this process is
referred as extracting n-grams frequency histograms, n being the width of the
sliding window.140

Once we have constructed the N bags of words, we compute the frequency
of each word in every bag (Eq. 1), and apply the tf∗idf weighting (Eq. 3). This
step makes it possible to reduce the importance of frequent patterns that are
so in most groups, because patterns that appear frequently in all groups cannot
discriminate between them. Figure 3 illustrates the computation of the bag of145

words for two sets of surgeries and the computation of the tf∗idf weight vectors.
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Set of surgeries

...
...

Bag of words

...

Sliding window

Figure 2: Illustration of the generation of a bag of words from a set of surgeries.

Bag of words:Set of surgeries 1

...
...

...

Set of surgeries 2

...

Bag of words:

TF*IDF weight vectors

TF*IDF

...

Set 1 Set 2

0.023 0.000

0.140 0.000

0.000 0.010

... ...

Figure 3: Illustration of the generation of the tf∗idf vectors from two sets of surgeries.

Once the tf∗idf weight vectors computed, it is possible to rank the patterns
according to their relative weight. The weight of a pattern can be naturally
interpreted as its importance for discriminating of a specific group (i.e., a set
of surgeries). The term frequency (tf ) allows to highlight the patterns that are150

often present in the set, while the inverse document frequency (idf ) weighting
allows to increase the importance of the patterns that are only present in this
set and reduce the importance of patterns that are present in multiple sets.

2.5. Performing classification using VSM

In order to classify an unlabeled sequence of surgical activities, we first155

transform the input sequence into its VSM representation using exactly the
same sliding window used to learn the model. We then compute the Cosine
similarity values between its term frequency vector and the N tf∗idf weight
vectors representing the N different groups of surgeries. The unlabeled sequence
is assigned to the group whose vector yields maximum cosine similarity value160

(Eq. 4).

2.6. Visualizing the importance of a pattern

Since the vector space model approach outputs tf∗idf weight vectors for
all subsequences extracted within a group a surgery, it is possible to find the
weight of any arbitrary selected subsequence. This feature makes it possible to165

visualise the results using a heat-map, which provides an immediate insight into
the layout of important discriminative subsequences.
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Figure 4: Illustration of the on-line recording of the data in the operating room.

3. Experiments and results

3.1. Surgical dataset used in the experiments

Experiments were performed on one-level anterior cervical discectomy (ACD)170

surgeries [9]. During this procedure, a cervical disc can be removed through an
anterior approach. This means that surgery is done through the front of the
neck as opposed to the back of the neck. A one-level ACD surgery can usu-
ally be decomposed into four major phases: the approach, the discectomy, the
arthrodesis, and the closure phases. An additional phase of hemostasis may be175

mandatory in certain cases. Forty surgeries were recorded on-line using the Sur-
gical workflow Editor [19] resulting in the creation of forty sequences of activities.
Figure 4 illustrates the recording of the data in the operating room. Surgeries
were performed at the Neurosurgery departments of: (1) the Rennes Univer-
sity Hospital, France, (2) the Leipzig University Hospital, Germany, and (3)180

the Montreal Neurological Institute and Hospital, McGill University, Canada.
Among the 40 surgeries, 11 were performed at site A, 18 were performed at site
C, and 11 at site B (we used site A, B and C as anonymized site names). As
for the expertise level of the attending surgeon, site C had two expert and two
intermediate surgeons participating in the study, site A had one intermediate185

and three expert surgeons participating, while in site B, all participating sur-
geons were considered to be expert surgeons. Table 1 presents the information
for each surgeon involved in the study: the location of the acquisition (sites A,
B and C), the index of the surgeon (1 to 11) and his/her level of expertise (E:
Expert, I: Intermediate). Expert surgeons were defined as those who already190

performed more than 200 ACD surgeries, whereas intermediate surgeons were
fully trained neurosurgeons but who performed less than 100 ACD procedures.
SPMs were acquired on-line by the same operator (an expert neurosurgeon) in
site A and site C, whereas SPMs of site B were acquired by an intermediate
surgeon, both having the same training on the software. Figure 5 presents box-195

plots of the duration of the interventions according to the location and expertise
of the surgeon. Figure 5 reveals that it is not possible to rely on the duration
of the surgery to accurately classify according to location or experience levels.
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Surgeon ID Expertise Location # Surgeries recorded

1 Intermediate Site A 3
2 Expert Site A 3
3 Expert Site A 3
4 Expert Site A 2
5 Expert Site B 6
6 Expert Site B 2
7 Expert Site B 3
8 Expert Site C 6
9 Expert Site C 6
10 Intermediate Site C 2
11 Intermediate Site C 4

Table 1: List of the surgeons involved in the study with their location and expertise level.

●

●●

●

4000

8000

12000

16000

Site A Site B Site C

D
ur

at
io

n

●

●
●

●●

4000

8000

12000

16000

Site A Exp Site A Int Site B Exp Site C Exp Site C Int

D
ur

at
io

n

Figure 5: Distribution of intervention duration according to the location (left) and surgeon
expertise (right).

For example, while the overall duration is significantly different in site C, they
are very similar in sites A and B (confirmed by a Welch t-test comparison of200

the two distributions with p = 0.7087). The same conclusion applies to experi-
ence levels where the duration between expert and intermediate surgeons is not
statistically different in site A (p = 0.5742) or in site C (p ≈ 0.326).

3.2. Selection of the sliding window size parameter

To apply our method, we have to set the size of the sliding window (w) used205

to create the bag of words. In all the experiments, this parameter was learnt
by cross-validation on the learning set, using a greedy search: we started with
w = 1 and increased its value as long as the (cross-validated) accuracy of the
classifiers increased. To provide an intuition about the influence of w on the
accuracy, we present in Figure 6 the evolution of the accuracy on the learning210

set according to different window sizes for the first three experiments. In these
experiments, the best values was always between 3 to 5 with no important
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Figure 6: Evolution of the accuracy according to the window length.

variations (see the plateau on Figure 6). This means that cross-validation works
well to automatically set the value of w, but also that if a value between 3 and
5 would work well if the user decides to set it manually. A detailed description215

of the experiments is given in the following section.

3.3. Description of the experiments

In this section we present the experiments performed to evaluate the ability
of the proposed method to identify patterns that are specific to a group of
surgeries and how these patterns can be used to classify the surgery accurately.220

Six different experiments were performed to predict alternatively:

• the location where the surgery took place (experiment #1).

• the expertise of the surgeon (experiments #2 to #5)

• which surgeon performed the surgery (experiment #6)

In experiment #1, the goal was to identify patterns that are specific of a225

surgery department of a hospital. In this experiment, we used the data from
sites A, B and C. The identified patterns are useful to understand the differences
in practice between different countries or surgery departments.

In experiments #2 to #5, we looked for patterns that are specific to either
expert or intermediate surgeons. As sites A and C are the only sites that contain230

expert and intermediate surgeons (B contains only experts), we first carry out
experiments for these sites independently. We then combine the data from A
and C and repeat the experiments of trying to identify skill level. Finally, we
pool the data from sites A, B and C together and study the same question; given
that site B only adds expert-performed surgeries, this allows us to observe the235

influence of class imbalance on the results. This study was designed to evaluate
if the differences between expert and intermediate surgeons were related to the
location site. The identified patterns are useful to understand the characteristics
of an expert surgeon and what are the main differences between expert and
intermediate surgeons. These patterns are also useful to support the automatic240

assessment of surgical skills.
Finally, in experiment #6 the goal is to identify patterns that are specific

to one given surgeon. By comparing the surgeries performed by one surgeon to
the ones performed by all the other surgeons, the method is able to identify the
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Table 2: Compared accuracies of the 1-Nearest Neighbor classifier using the Euclidean dis-
tance, Dynamic Time Warping and our proposed VSM model. We use leave-one-out cross-
validation. Values in boldface represent the best results obtained for each experiment.

Exp Prediction Sites Euclidean DTW VSM

A B C

#1 Location ��� 92.5% ± 8.2 97.5% ± 4.8 100% ± 0 (w = 3)

#2 Expertise � 88% ± 19.2 94.5% ± 13.5 100% ± 0 (w = 3)

#3 Expertise � 81% ± 18.1 100% ± 0 100% ± 0 (w = 5)

#4 Expertise �� 75.9% ± 15.6 93% ± 9.3 89.6% ± 11.1 (w = 3)

#5 Expertise ��� 82.5% ± 11.8 95% ± 6.7 85% ± 11.1 (w = 5)

#6 Surgeon Id ��� 45% ± 15.4 65% ± 14.8 77.5% ± 12.9 (w = 3)

behavioral characteristics that are unique to this surgeon, which can be seen as245

a proxy for his or her surgical signature. In this experiment, we use the data
from all sites.

As competitors, we used a 1-Nearest Neighbor (1-NN) classifier using as
similarity metric (1) the Euclidean distance and (2) DTW score. We selected
the Euclidean distance and DTW in conjunction with 1-NN classifier as this250

combination has proven to be extremely efficient for time-series and sequence
classification [20], and in particular for SPM [8, 9]. For the proposed method
(referred as VSM), we used the Cosine similarity as presented in Eq. 4. We used
a leave-one-out cross-validation approach consisting in alternatively taking one
surgery out of the set and classifying it using the remaining ones. For the255

Euclidean and DTW methods, each surgery that is left out is compared to the
set of remaining surgeries. The class of the identified nearest surgery is then
compared to the actual class. For the VSM approach, each surgery that is
left out is compared to the tf∗idf weight vectors that are learnt on the set of
remaining surgeries. The prediction is performed by taking the maximal cosine260

similarity value. We used the accuracy to compare the results (i.e., number of
correct predictions over the total number of predictions). We also computed
confidence intervals with an estimation of the true error at a confidence level

of 95% [21]: 1.96 ×
√

(error)(1−error)
n where error is the error-rate (number

of incorrect predictions over the number of predictions) and n the number of265

samples used in the experiment.

3.4. Results

Table 2 presents the results of our six experiments with their associated
confidence intervals. We can first observe that the Euclidean distance performs
poorly and does not once achieve better accuracy than either DTW or VSM.270

Our method appears competitive and complementary to DTW. Our VSM model
uniformly outperformed DTW for location and surgeon prediction, while DTW
seems competitive to predict the level of expertise of surgeons. Furthermore, it
is interesting to observe that, when the number of examples per class is limited
(which is particularly the case for prediction of the surgeon), VSM seems to275
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# Pattern (w = 3) Site A Site B Site C
1 di-fa-cl in-mu-re di-fa-cl 23.00 0.00 2.00

2 re-li-ro di-li-ho re-li-ro 16.00 0.00 7.00

3 di-fa-cl di-fa-cl di-fa-cl 15.00 0.00 1.00

4 in-mu-re di-fa-cl di-fa-cl 13.00 0.00 0.00

5 in-mu-re di-fa-cl in-mu-re 13.00 0.00 2.00

6 re-di-ro di-di-ho re-di-cu 13.00 0.00 4.00

7 in-ve-fl in-ve-re in-ve-fl 12.00 0.00 0.00

8 re-di-ro ho-di-su re-di-ro 12.00 0.00 0.00

9 in-ve-fl in-ve-fl in-ve-fl 12.00 0.00 0.00

10 re-li-ro re-li-ro re-li-ro 12.00 6.00 10.00

Table 3: Top 10 patterns from site A in experiment #1 sorted by tf score. The highest values
(very frequent) are depicted in green while the lowest values (rare) are in red.

cope better with the lack of data. We attribute this behavior to the ability of
our VSM model to collect a relatively robust description of the sequences; this
is because even after having scanned one sequence, we have already collected
several thousands of ‘words’ and their statistics.

An interesting features of the VSM approach is to provide the set of patterns280

that are the most distinctive for a given group of surgeries. Analysis of these
top patterns allows us to understand what makes a group of surgeries specific.
To highlight the influence of using tf∗idf, we first present in Table 3 the top
10 subsequences patterns with regards to tf alone for the task of predicting
the location of the surgery (#1 in Table 2). This corresponds to the 10 most285

frequent subsequences in the surgeries that were performed in Site A, and the
corresponding frequencies of these patterns in site B and C. In this table, the
names of the surgical activities were shortened. For example, di-fa-cl stands
for dissect the fascia with a classic-cottonoids-forceps. Table 9 provides the
legend for the abbreviations used in the sub-sequences.290

Table 4 presents the top 10 sequences after the application of the idf factor
(see Eq. 3). We can observe that some patterns from Table 3 were discarded. For
example, the pattern 2 disappeared as it also appeared in Site C. The pattern
10 was also discarded as it appeared in Site B and Site C. The only remaining
patterns, are the patterns that are frequent in Site A, and not frequent in Site295

B and C, because of their specificity. Tables 5 and 6 present the most frequent
patterns respectively for Site B and site C.

Table 7 and 8 present the patterns for second experiment (#2 in Table 2)
on classifying the surgeons of site A according to their experience. The tables
present the 10 most discriminative patterns according to tf∗idf factor for the300

two groups (i.e., expert vs. intermediate).
Finally, it is also possible to use the tf∗idf weight vectors of all subsequences

extracted from a group of surgeries to highlight the important subsequences
in a given complete surgery. This feature enables a heat map like visualiza-
tion technique that provides an immediate insight into the layout of important305

class-characterizing subsequences. Figure 7 illustrates a sequence of an expert
sequence of activities from experiment #2. It shows in red the subsequences
that are specific to expert surgeons, while in green the subsequences that are
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# Pattern (w = 3) Site A Site B Site C
1 in-mu-re di-fa-cl di-fa-cl 6.20 0.00 0.00

2 in-ve-fl in-ve-re in-ve-fl 5.72 0.00 0.00

3 re-di-ro ho-di-su re-di-ro 5.72 0.00 0.00

4 in-ve-fl in-ve-fl in-ve-fl 5.72 0.00 0.00

5 ho-di-su re-di-ro ho-di-su 5.24 0.00 0.00

6 in-ve-re in-ve-fl in-ve-re 4.77 0.00 0.00

7 cu-mu-sc co-sk-bi cu-mu-sc 3.81 0.00 0.00

8 co-sk-bi cu-mu-sc co-sk-bi 3.81 0.00 0.00

9 di-fa-di in-mu-re di-fa-di 3.81 0.00 0.00

10 di-fa-di di-fa-di in-mu-re 3.33 0.00 0.00

Table 4: Top 10 patterns from site A in experiment #1 sorted by tf∗idf score. The highest
values (very frequent) are depicted in green while the lowest values (rare) are in red.

# Pattern (w = 3) Site A Site B Site C
1 di-mu-sc co-fa-bi di-mu-sc 0.00 60.11 0.00
2 di-fa-sc co-fa-bi di-fa-sc 0.00 60.11 0.00
3 co-fa-bi di-mu-sc co-fa-bi 0.00 53.43 0.00
4 co-fa-bi di-fa-sc co-fa-bi 0.00 50.57 0.00
5 se-sk-ne cu-sk-sc se-sk-ne 0.00 14.31 0.00
6 ho-di-cu dr-di-cu ho-di-cu 0.00 12.40 0.00
7 dr-di-cu ho-di-cu dr-di-cu 0.00 12.40 0.00
8 ho-de-su ho-de-su ho-de-su 0.00 11.45 0.00
9 cu-sk-sc se-sk-ne cu-sk-sc 0.00 10.97 0.00
10 se-fa-ne cu-sk-sc se-fa-ne 0.00 9.54 0.00

Table 5: Top 10 patterns from site B in experiment #1 sorted by tf∗idf score. The highest
values (very frequent) are depicted in green while the lowest values (rare) are in red.

# Pattern (w = 3) Site A Site B Site C
1 in-mu-cl in-ve-fl re-mu-cl 0.00 0.00 5.24
2 co-sk-bi in-sk-cl in-sk-re 0.00 0.00 5.24
3 cu-sk-sc co-sk-bi in-sk-cl 0.00 0.00 4.77
4 in-mu-re in-mu-re co-li-fo 0.00 0.00 4.77
5 in-ve-fl re-mu-cl in-mu-re 0.00 0.00 3.81
6 in-mu-re co-li-fo ir-li-sa 0.00 0.00 3.33
7 di-fa-cl di-fa-sc di-fa-di 0.00 0.00 2.86
8 in-ve-ar in-ve-ar in-ve-ar 0.00 0.00 2.86
9 in-mu-re co-li-fo cu-li-sc 0.00 0.00 2.86
10 ir-di-sa in-di-ar in-di-ar 0.00 0.00 2.38

Table 6: Top 10 patterns from site C in experiment #1 sorted by tf∗idf score. The highest
values (very frequent) are depicted in green while the lowest values (rare) are in red.

# Pattern (w = 3) Exp Inter
1 re-di-ro di-di-ho re-di-cu di-di-ho 2.10 0.00
2 di-fa-di di-fa-di in-mu-re di-fa-di 1.80 0.00
3 di-di-ho re-li-ro di-di-ho re-li-ro 1.50 0.00
4 re-di-ro re-di-ho re-di-ro re-di-ho 1.50 0.00
5 re-li-ro re-li-ro re-li-ro re-li-ro 1.50 0.00
6 re-di-ro di-di-ho re-di-cu re-di-ro 1.50 0.00
7 re-li-ro di-di-ho re-li-ro di-di-ho 1.50 0.00
8 di-fa-di in-mu-re di-fa-di di-fa-di 1.50 0.00
9 re-di-ro re-di-ho re-di-ho re-di-ro 1.20 0.00
10 re-di-ho re-di-ro re-di-ho re-di-ro 1.20 0.00

Table 7: Top 10 patterns from site A expert surgeons in experiment #2 sorted by tf∗idf score.
The highest values (very frequent) are depicted in green while the lowest values (rare) are in
red.

12



# Pattern (w = 3) Exp Inter
1 di-fa-cl in-mu-re di-fa-cl in-mu-re 0.00 2.40
2 ho-di-su re-di-ro ho-di-su re-di-ro 0.00 2.40
3 co-sk-bi cu-mu-sc co-sk-bi cu-mu-sc 0.00 2.10
4 re-di-ro ho-di-su re-di-ro ho-di-su 0.00 2.10
5 cu-mu-sc co-sk-bi cu-mu-sc co-sk-bi 0.00 2.10
6 in-mu-re di-fa-cl di-fa-cl di-fa-cl 0.00 1.50
7 di-fa-cl di-fa-cl di-fa-sc di-fa-cl 0.00 1.50
8 di-fa-cl di-fa-sc di-fa-cl di-fa-cl 0.00 1.20
9 co-mu-bi di-fa-sc co-mu-bi di-fa-sc 0.00 1.20
10 re-di-ro re-di-ro ho-di-su re-di-ro 0.00 0.90

Table 8: Top 10 patterns from site A intermediate surgeons in experiment #2 sorted by tf∗idf
score. The highest values (very frequent) are depicted in green while the lowest values (rare)
are in red.

Class speci city :
negative neutral high

Figure 7: Heat map representation of an expert sequence of right hand activities highlighting
the specificity of sub-sequences using tf∗idf weights vector.

also common with intermediate surgeons. In this example, the most specific
activities (in red) are identified in the dissection phase (e.g., dissect fascia310

using a dissectors).

4. Discussion

In experiments #1, #2 and #3 (Table 2), the proposed method (VSM) pro-
vides the best results obtaining a perfect classification of 100%. This approach
outperformed the state-of-the-art method of 1-NN using DTW as distance mea-315

sure (except for #3 where they both reached 100%). These results can be
explained by the ability of the method to identify patterns that are specific to
the location where the surgeries took place (experiment #1) and specific to sur-
geon experience (experiment #2). The method using 1-NN Euclidean distance
is far behind as it does not take into account the temporal distortion.320

For experiment #1, the 10 more specific patterns for the different location
sites A, B and C are provided respectively in Table 4, 5 and 6. In these tables,
one can observe that each location has its own specific patterns. Site B seems
to have very specific behaviors compared to Site A and C as the values of
tf∗idf weight vectors in Table 5 are very high compared to Tables 4 and 5. It325

means that in Site C, some patterns are very frequent, and absent from Site A
and B. Each surgery department has its own way of performing the surgeries.
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Furthermore, national recommendations, the context of the operating rooms or
the medical equipment that is available, can also influence the way a surgery is
performed in a specific location.330

In experiments #2 and #3, the goal was to identify patterns that are spe-
cific to a group of surgeons of a specific location and having different experience
levels (expert vs. intermediate). The experiment #2 focused on surgeons of
site A. We presented the top 10 patterns (Table 7 and 8) extracted from this
experiment to an expert surgeon for interpretation. Using his expertise, we335

identified that the discriminative patterns for the two groups belonged to very
distinctive phases of the surgery. For the expert, most of the patterns were
identified during the discectomy phase (multiple actions using dissect), which
is a very technical phase where the technical expertise really makes a differ-
ence. For the intermediates, the patterns concerned mostly the dissection of340

the surgical approach, which is also a very technical phase. The patterns from
intermediate surgeons also contain more repetitive activities (e.g., abab) which
is typical when a surgeon learns how to perform a specific type of surgery.

In experiments #4 and #5, we put together the expert and intermediate
surgeries of sites A and C (containing expert and intermediate surgeons) and B345

(containing only expert surgeons). In this configuration, our method provides
accuracies that are lower than 1-NN DTW but higher than 1-NN Euclidean. The
difficulty to identify specific patterns in this scenario can be explained by the
heterogeneity within the two groups of ”expert” and ”intermediate” surgeries
as they come from two different locations. It means that the method was not350

able to identify patterns that are common to all experts and all intermediates
of sites A and C. This result is in favor of the hypothesis that the way surgical
skills are transmitted is dependent of the location.

Finally in the last experiment (#6), we looked for patterns that are specific
to a given surgeon (11 surgeons in total). We alternatively took all the surgeries355

performed by one surgeon, and we compared them to all the other surgeries. The
goal was to find the patterns that are specific to one surgeon, a subsequences
that is the ”signature” of one surgeon. In this experiment, our method provided
the best result with an accuracy of 77.5 %. It was possible to find patterns that
are specific of one surgeon for 31 surgeries out of 40. Four surgeries of the360

nine misclassified surgeries were the surgeries from surgeons #4 and #10, from
which there were only two surgeries available for each surgeon in the dataset.
The method was not able to find distinctive patterns of a surgeon from only
two surgeries. For the five remaining misclassifications, they are spread out on
surgeons having more surgeries, meaning that a specific pattern in their other365

performed surgeries was still found. Note that compared to 1-NN DTW, the
VSM method does not introduce additional misclassifications and only corrected
some DTW classification errors.

These results reveal that our method makes it possible to identify precisely
what are the subsequences of activities that are highly frequent in the behavior of370

senior surgeons and absent from the behavior of junior surgeons. These specific
patterns could be used to better understand what “makes” a senior surgeon,
and what are the specific pattern a junior has to learn throughout his training.
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Our method makes it possible to, for instance, identify which parts of a surgery
was performed like a senior surgeon or like a junior surgeon. It can be used375

as a teaching tool to provide specific feedback showing to junior surgeons the
parts of the surgery where they behaved like a senior surgeons and where they
behaved like a junior surgeons.

Our work differs from previous efforts in that instead of looking into a single
group of surgeries, we focus on the comparative analysis of multiple groups at380

the same time. The approach proposed in this paper provides more intuitive
results, as it identifies automatically the set of patterns explaining the differ-
ences between the groups. Note that the proposed approach is not designed
to discriminate good or bad surgical behaviors, as such high-level interpretation
requires years of surgical expertise and practice. We only aim at supporting385

high-level analyses by identifying what are the most specific patterns in a set of
surgeries, as compared to another set.

It is interesting to note some drawbacks of our study. The first one is related
to the inherent variability of surgeries. While we focused on a standardized
procedure with patients having similar background, there is always a surgery-390

or patient-specific part to each surgery. Even if we didn’t notice this to be
impacting our results, it is important to keep in mind that our method naturally
discards the subsequences that rarely occur. Second, as the size of the dataset
used in the experiments is currently limited, the patterns extracted should not
be considered uniformly true. A medical study about actual surgical patterns,395

using a larger corpus, would be important – this paper introduces the method
to perform such a study which we hope will be possible as more data is being
collected. Finally, it is important to observe that our VSM approach focuses on
the sequence of actions, and not how those actions were performed. This should
be taken into account when using our approach in a training system.400

We believe that our VSM model is a milestone in surgical process analysis
and that there are numerous possible applications. For example, it would be
possible to correlate specific patterns with specific practical skills, which would
directly support the automatic evaluation of surgical skills. Furthermore, the
correlation presence/absence of some patterns with after-surgery complication,405

or readmission could be studied [22, 23]. In this case, a dictionary of good
and bad patterns could be built. Finally, this method could also be used as an
addition to surgical activities prediction systems [24, 25, 26, 27] by providing
frequencies of most frequent subsequences. Our system could also be used to
identify the core set of subsequences activities that are performed by all the410

surgeons regardless of their countries or skill levels. This would however require
a larger dataset to be collected.

To conclude this discussion, we list the main contributions of this paper:

1. We introduced the first integration and application of VSM to the field of
SPM.415

2. We introduced a framework which makes possible to identify the most
discriminative patterns of a given set of surgeries.

3. We assessed our framework on real-world data with the task of predicting
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the location where the surgery took place, the experience of the surgeon,
and which surgeon performed the surgery.420

4. We proposed a visualization of the tf∗idf weight vectors as a tool that
can support teaching programs to highlight interesting parts of a given
surgery.

5. Conclusion

In this paper we presented a method that builds upon tf∗idf pattern ranking425

and VSM in order to identify discriminative patterns in surgeries. We showed
how this framework can be applied to identify patterns that can then be used to
classify according to the location where the surgery took place or the expertise
of the surgeon. The method was also able to identify patterns that are charac-
teristic of a single surgeon. We have also shown that the visualization of the top430

patterns ranked using their tf∗idf weights, along with the visualization of their
weights on a sequence, could be a useful tool while teaching surgeries. There
are multiple ways to extend this work to the identification of patterns correlat-
ing with the acquisition of a specific technical skills, or explaining after-surgery
complication, or readmission. In future work, we plan to investigate in more435

depth the correlation between sub-sequences of activities and skills assessment.
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