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Abstract

Mining sequential data is an old topic that has been revived in the last decade, due to the increasing availability of sequential
datasets. Most works in this field are centred on the definition and use of a distance (or, at least, a similarity measure) between
sequences of elements. A measure called Dynamic Time Warping (DTW) seems to be currently the most relevant for a large panel
of applications. This article is about the use of DTW in data mining algorithms, and focuses on the computation of an average of a
set of sequences. Averaging is an essential tool for the analysis of data. For example, the K-means clustering algorithm repeatedly
computes such an average, and needs to provide a description of the clusters it forms. Averaging is here a crucial step, which must
be sound in order to make algorithms work accurately. When dealing with sequences, especially when sequences are compared
with DTW, averaging is not a trivial task.

Starting with existing techniques developed around DTW, the article suggests an analysis framework to classify averaging
techniques. It then proceeds to study the two major questions lifted by the framework. First, we develop a global technique for
averaging a set of sequences. This technique is original in that it avoids using iterative pairwise averaging. It is thus insensitive to
ordering effects. Second, we describe a new strategy to reduce the length of the resulting average sequence. This has a favourable
impact on performance, but also on the relevance of the results. Both aspects are evaluated on standard datasets, and the evaluation
shows that they compare favourably with existing methods. The article ends by describing the use of averaging in clustering.
The last section also introduces a new application domain, namely the analysis of satellite image time series, where data mining
techniques provide an original approach.

Key words: sequence analysis, time series clustering, dynamic time warping, distance-based clustering, time series averaging,
DTW Barycenter Averaging, global averaging, satellite image time series

1. Introduction

Time series data have started to appear in several applica-
tion domains, like biology, finance, multimedia, image anal-
ysis, etc. Data mining researchers and practitioners are thus
adapting their techniques and algorithms to this kind of data.
In exploratory data analysis, a common way to deal with such
data consists in applying clustering algorithms. Clustering, i.e.,
the unsupervised classification of objects into groups, is often
an important first step in a data mining process. Several exten-
sive reviews of clustering techniques in general have been pub-
lished [1–4] as well as a survey on time series clustering [5].

Given a suitable similarity measure between sequential data,
most classical learning algorithms are readily applicable.

A similarity measure on time series data (also referred to as
sequences hereafter) is more difficult to define than on classical
data, because the order of elements in the sequences has to be
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considered. Accordingly, experiments have shown that the tra-
ditional Euclidean distance metric is not an accurate similarity
measure for time series. A similarity measure called Dynamic
Time Warping (DTW) has been proposed [6, 7]. Its relevance
was demonstrated in various applications [8–13].

Given this similarity measure, many distance-based learn-
ing algorithms can be used (e.g., hierarchical or centroid-based
ones). However, many of them, like the well-known K-means
algorithm, or even Ascendant Hierarchical Clustering, also re-
quire an averaging method, and highly depend on the quality
of this averaging. Time series averaging is not a trivial task,
mostly because it has to be consistent with the ability of DTW
to realign sequences over time. Several attempts at defining
an averaging method for DTW have been made, but they pro-
vide an inaccurate notion of average [14], and perturb the con-
vergence of such clustering algorithms [15]. That is mostly
why several time series clustering attemps prefer to use the
K-medoids algorithm instead (see [16–18] for examples com-
bining DTW and the K-medoids algorithm). Throughout this
article, and without loss of generality, we use some times the
example of the K-means algorithm, because of its intensive use
of the averaging operation, and because of its applicability to
large datasets.
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In this article, we propose a novel method for averaging
a set of sequences under DTW. The proposed method avoids
the drawbacks of other techniques, and is designed to be used,
among others, in similarity-based methods (e.g., K-means) to
mine sequential datasets. Section 2 introduces the DTW sim-
ilarity measure on sequences. Then Section 3 considers the
problem of finding a consensus sequence from a set of sequences,
providing theoretical background and reviewing existing meth-
ods. Section 4 introduces the proposed averaging method, called
Dtw Barycenter Averaging (DBA). It also describes experi-
ments on standard datasets from the UCR time series classifica-
tion and clustering archive [19] in order to compare our method
to existing averaging methods. Then, Section 5 looks deeper
into the sufficient number of points to accurately represent of
a set of sequences. Section 6 describes experiments conducted
to demonstrate the applicability of DBA to clustering, by de-
tailing experiments carried out with the K-means algorithm on
standard datasets as well as on an application domain, namely
satellite image time series. Finally, Section 7 concludes the ar-
ticle and presents some further work.

2. Dynamic Time Warping (DTW)

In this section, we recall the definition of the euclidean dis-
tance and of the DTW similarity measure. Throughout this
section, let A = 〈a1, . . . , aT 〉 and B = 〈b1, . . . , bT 〉 be two se-
quences, and let δ be a distance between elements (or coordi-
nates) of sequences.

Euclidean distance. This distance is commonly accepted as the
simplest distance between sequences. The distance between A
and B is defined by:

D(A, B) =
√
δ(a1, b1)2 + · · · + δ(aT , bT )2

Unfortunately, this distance does not correspond to the com-
mon understanding of what a sequence really is, and cannot
capture flexible similarities. For example, X = 〈a, b, a, a〉 and
Y = 〈a, a, b, a〉 are different according to this distance even
though they represent similar trajectories.

Dynamic Time Warping. DTW is based on the Levenshtein dis-
tance (also called edit distance) and was introduced in [6, 7],
with applications in speech recognition. It finds the optimal
alignment (or coupling) between two sequences of numerical
values, and captures flexible similarities by aligning the coordi-
nates inside both sequences. The cost of the optimal alignment
can be recursively computed by:

D(Ai, B j) = δ(ai, b j) + min


D(Ai−1, B j−1)
D(Ai, B j−1)
D(Ai−1, B j)

 (1)

where Ai is the subsequence 〈a1, . . . , ai〉. The overall similarity
is given by D(A|A|, B|B|) = D(AT , BT ).

Unfortunately, a direct implementation of this recursive def-
inition leads to an algorithm that has exponential cost in time.

Fortunately, the fact that the overall problem exhibits overlap-
ping subproblems allows for the memoization of partial results
in a matrix, which makes the minimal-weight coupling compu-
tation a process that costs |A|·|B| basic operations. This measure
has thus a time and a space complexity of O(|A| · |B|).

DTW is able to find optimal global alignment between se-
quences and is probably the most commonly used measure to
quantify the dissimilarity between sequences [9–13]. It also
provides an overall real number that quantifies similarity. An
example DTW-alignment of two sequences can be found in Fig-
ure 1: it shows the alignment of points taken from two sinu-
soids, one being slightly shifted in time. The numerical result
computed by DTW is the sum of the heights1 of the associa-
tions. Alignments at both extremities on Figure 1 show that
DTW is able to correctly re-align one sequence with the other,
a process which, in this case, highlights similarities that Eu-
clidean distance is unable to capture. Algorithm 1 details the
computation.

Algorithm 1 DTW
Require: A = 〈a1, . . . , aS 〉

Require: B = 〈b1, . . . , bT 〉

Let δ be a distance between coordinates of sequences
Let m[S ,T ] be the matrix of couples (cost, path)

m[1, 1]← ( δ(a1, b1) , (0, 0) )
for i← 2 to S do

m[i, 1]← ( m[i − 1, 1, 1] + δ(ai, b1) , (i − 1, 1) )
end for
for j← 2 to T do

m[1, j]← ( m[1, j − 1, 1] + δ(a1, b j) , (1, j − 1) )
end for
for i← 2 to S do

for j← 2 to T do
minimum ← minVal( m[i − 1, j] , m[i, j − 1] , m[i −
1, j − 1] )
m[i, j] ← ( f irst(minimum) +

δ(ai, b j), second(minimum))
end for

end for
return m[S ,T ]

Algorithm 2 first
Require: p = (a, b) : couple

return a

Algorithm 3 second
Require: p = (a, b) : couple

return b

1In fact, the distance δ(ai, b j) computed in Equation 1 is the distance be-
tween two coordinates without considering the time distance between them.



Algorithm 4 minVal
Require: v1, v2, v3 : couple

if f irst(v1) ≤ min( f irst(v2) , f irst(v3) ) then
return v1

else if f irst(v2) ≤ f irst(v3) then
return v2

else
return v3

end if

Figure 1: Two 1D sequences aligned with Dynamic Time Warping. Coordinates
of the top and bottom sequences have been respectively computed by cos(t)
and cos(t + α). For visualization purpose, the top sequence is drawn vertically
shifted.

3. Related work

In the context of classification, many algorithms require a
method to represent in one object, informations from a set of
objects. Algorithms like K-medoids are using the medoid of a
set of objects. Some others like K-means need to average a set
of objects, by finding a mean of the set. If these “consensus”
representations are easily definable for objects in the Euclidean
space, this is much more difficult for sequences under DTW.

Finding a consensus representation of a set of sequences is
even described by [20], chapter 14, as the Holy Grail. In this
section, we first introduce the problem of finding a consensus
sequence from a set of sequences, inspired by theories devel-
oped in computational biology. Then, we make the link be-
tween these theories on strings and methods currently used to
average sequences of numbers under Dynamic Time Warping.

To simplify explanations, we use the term coordinate to
designate an element, or point, or component of a sequence.
Without loss of generality, we consider that sequences con-
tain T coordinates that are one-dimensional data. We note A(β)

a sequence of length β. In the following, we consider a set
S = {S1, · · · ,SN} of N sequences from which we want to com-
pute a consensus sequence C.

3.1. The consensus sequence problem

As we focus on DTW, we will only detail the consensus
sequence problem from the edit distance side. (The problem
for DTW is almost the same, and we will detail the differences
in next subsection.) The term consensus is subjective, and de-
pends on the needs. In the context of sequences, this term is
used with three meanings: the longest common subsequence of
a set, the medoid sequence of the set, or the average sequence
of the set.

The longest common subsequence generally permits to vi-
sualize a summary of a set of sequences. It is however generally
not used in algorithms because the resulting common subse-
quence does not cover the whole data.

The two other concepts refer to a more formal definition,
corresponding to the sequence in the center of the set of se-
quences. We have to know what the center notion means. The
commonly accepted definition is the object minimizing the sum
of squared distances to objects of the set. When the center must
be found in the dataset, the center is called “medoid sequence”.
Otherwise, when the search space of the center is not restricted,
the most widely used term is “average sequence”.

As our purpose is the definition of a center minimizing the
sum of squared distances to sequences of a set, we focus on
the definition of an average sequence when the corresponding
distance is DTW.

Definition. Let E be the space of the coordinates of sequences.
By a minor abuse of notation, we use ET to designate the space
of all sequences of length T . Given a set of sequences S =

{S1, · · · ,SN}, the average sequence C(T ) must fulfill:

∀X ∈ ET ,

N∑
n=1

DTW2(C(T ),Sn) ≤
N∑

n=1

DTW2(X,Sn) (2)

Since no information on the length of the average sequence
is available, the search cannot be limited to sequences of a given
length, so all possible values for T have to be considered. Note
that sequences of S have a fixed length T . C has hence to fulfill:

∀t ∈ [1,+∞[,

∀X ∈ Et,

N∑
n=1

DTW2(C,Sn) ≤
N∑

n=1

DTW2(X,Sn)


(3)

This definition relies in fact on the Steiner trees theory; C
is called Steiner sequence [20]. Note that the sums in Equa-
tions (2) and (3), is often called Within Group Sum of Squares
(WGSS), or discrepancy distance in [21]. We will also use the
simple term inertia, used in most works on clustering.

3.2. Exact solutions to the Steiner sequence problem

As shown in [22], when considered objects are simple points
in an α-dimensional space, the minimization problem corre-
sponding to Equation (2) can be solved by using the property
of the arithmetic mean. As the notion of arithmetic mean is not
easily extendable to semi-pseudometric spaces (i.e., spaces in-
duced by semi-pseudometrics like DTW), we need to detail this



Steiner sequence problem, i.e., the problem to find an average
sequence. To solve this problem, there are two close families of
methods.

The first one consists in computing the global multiple align-
ment [23] of the N sequences of S. This multiple alignment is
computable by extending DTW for aligning N sequences. For
instance, instead of computing DTW by comparing three val-
ues in a square, one have to compare seven values in a cube
for three sequences. This idea can be generalized by computing
DTW in a N-dimensional hypercube. Given this global align-
ment, C can be found by averaging column by column the mul-
tiple alignment. However this method presents two major dif-
ficulties, that prevent its use. First, the multiple alignment pro-
cess takes Θ

(
T N

)
operations [24], and is not tractable for more

than a few sequences. Second, the global length of the multiple
alignment can be on the order of T N , and requires unrealistic
amounts of memory.

The second family of methods consists in searching through
the solution space, keeping those minimizing the sum (Equation
2). In the discrete case (i.e., sequences of characters or of sym-
bolical values), as the alphabet is generally finite, this scan is
easy. However, as the length of the global alignment is poten-
tially T N − 2T , scanning the space takes Θ(T N) operations. In
the continuous case (i.e., sequences of numbers or of number
vectors), scanning all solutions is impossible. Nevertheless, we
will explain in the next paragraph how this search can be guided
towards potential solutions, even though this strategy also ex-
hibits exponential complexity.

In fact, we need a method to generate all potential solu-
tions. Each solution corresponds to a coupling between C and
each sequence of S. As all coordinates of each sequence of S
must be associated to at least one coordinate of C, we have to
generate all possible groupings between coordinates of each se-
quence of S and coordinates of C. Each coordinate of C must
be associated to a non-empty non-overlapping set of coordi-
nates of sequences of S. To generate all possible groupings,
we can consider that each sequence is split in as many subse-
quences as there are coordinates in C. Thus, the first coordinate
of C will be associated to the coordinates appearing in the first
subsequences of sequences of S, the second coordinate to coor-
dinates appearing in the second subsequences of sequences of
S, and so on. Then, for C(p) (C of length p), the N sequences
of S have to be cut into p parts. There are

(
T
p

)
ways to cut a se-

quence of length T into p subsequences. Thus, for N sequences
there are

(
T
p

)N
possibilities. The time complexity of this scan is

therefore in Θ(
(

T
p

)N
).

One can note in Equation (3) that p > T does not make
sense. It would mean that sequences have to be split in more
subsequences than they contain coordinates. Thus, we can limit
the search conditions of C to p ∈ [1,T ]. But even with this
tighter bound, the overall computation remains intractable.

3.3. Approximating the exact solution
As we explained in the previous subsection, finding the av-

erage sequence is deeply linked to the multiple alignment prob-
lem. Unfortunately, 30 years of well-motivated research did

not provide any exact scalable algorithm, neither for the mul-
tiple alignment problem, nor for the consensus sequence prob-
lem. Given a sequence standing for the solution, we even can-
not check if the potential solution is optimal because we rely on
a subset of the search space. A number of heuristics have been
developed to solve this problem (see [25–29] for examples). We
present in this subsection the most common family of methods
used to approximate the average sequence: iterative pairwise
averaging. We will also link this family to existing averaging
method for DTW.

Iterative pairwise averaging consists in iteratively merging
two average sequences of two subsets of sequences into a single
average sequence of the union of those subsets. The simplest
strategy computes an average of two sequences and iteratively
incorporates one sequence to the average sequence. Differences
between existing methods are the order in which the merges are
done, and the way they compute an average of two sequences.

3.3.1. Ordering schemes
Tournament scheme. The simplest and most obvious averag-
ing ordering consists in pairwise averaging sequences follow-
ing a tournament scheme. That way, N/2 average sequences
are created at first step. Then those N/2 sequences, in turn,
are pairwise averaged into N/4 sequences, and so on, until one
sequence is obtained. In this approach, the averaging method
(between two sequences) is applied N times.

Ascendant hierarchical scheme. A second approach consists
in averaging at first the two sequences whose distance (DTW)
is minimal over all pairs of sequences. This works like As-
cendant Hierarchical Clustering, computing a distance matrix
before each average computation. In that way, the averaging
method is also called N − 1 times. In addition, one has to take
into account the required time to compute N times the distance
matrix.

3.3.2. Computing the average sequence
Regarding the way to compute an average from two se-

quences under DTW, most methods are using associations (cou-
pling) computed with DTW.

One coordinate by association. Starting from a coupling be-
tween two sequences, the average sequence is built using the
center of each association. Each coordinate of the average se-
quence will thus be the center of each association created by
DTW. The main problem of this technique is that the resulting
mean can grow substantially in length, because up to |A|+ |B|−2
associations can be created between two sequences A and B.

One coordinate by connected component. Considering that the
coupling (created by DTW) between two sequences forms a
graph, the idea is to associate each connected component of this
graph to a coordinate of the resulting mean, usually taken as the
barycenter of this component. Contrary to previous methods,
the length of resulting mean can decrease. The resulting length
will be between 2 and min(|A|, |B|).



3.4. Existing algorithms
The different ordering schemes and average computations

just described are combined in the DTW literature to make up
algorithms. The two main averaging methods for DTW are pre-
sented below.

NonLinear Alignment and Averaging Filters. NLAAF was in-
troduced in [30] and rediscovered in [15]. This method uses
the tournament scheme and the one coordinate by association
averaging method. Its main drawback lies in the growth of its
resulting mean. As stated earlier, each use of the averaging
method can almost double the length of the average sequence.
The entire NLAAF process could produce, over all sequences,
an average sequence of length N × T . As classical datasets
comprise thousands of sequences made up on the order of hun-
dred coordinates, simply storing the resulting mean could be
impossible. This length problem is moreover worsened by the
complexity of DTW, that grows bi-linearly with lengths of se-
quences. That is why NLAAF is generally used in conjunction
with a process reducing the length of the mean, leading to a loss
of information and thus to an unsatisfactory approximation.

Prioritized Shape Averaging. PSA was introduced in [21] to
resolve shortcomings of NLAAF. This method uses the Ascen-
dant hierarchical scheme and the one by connected compo-
nent averaging method. Although this hierarchical averaging
method aims at preventing the error to propagate too much, the
length of average sequences remains a problem. If one align-
ment (with DTW) between two sequences leads to two con-
nected components (i.e., associations are forming two hand-
held fans), the overall resulting mean will be composed of only
two coordinates. Obviously, such a sequence cannot represent
a full set of potentially long sequences. This is why authors
proposed to replicate each coordinate of the average sequence
as many times as there were associations in the corresponding
connected component. However, this repetition of coordinates
causes the problem already observed with NLAAF, by poten-
tially doubling the number of coordinates of each intermediate
average sequence. To alleviate this problem, the authors sug-
gest using a process in order to reduce the length of the resulting
mean.

3.5. Motivation
We have seen that most of the works on averaging sets of

sequences can be analyzed along two dimensions: first, the
way they consider the individual sequences when averaging,
and second, the way they compute the elements of the result-
ing sequences. These two characteristics have proved useful to
classify the existing averaging techniques. They are also useful
angles under which new solutions can be elaborated.

Regarding the averaging of individual sequences, the main
shortcoming of all existing methods is their use of pairwise av-
eraging. When computing the mean of N sequences by pairwise
averaging, the order in which sequences are taken influences the
quality of the result, because neither NLAAF nor PSA are asso-
ciative functions. Pairwise averaging strategies are intrinsically
sensitive to the order, with no guarantee that a different order

would lead to the same result. Local averaging strategies like
PSA or NLAAF may let an initial approximation error propa-
gate throughout the averaging process. If the averaging process
has to be repeated (e.g., during K-means iterations), the effects
may dramatically alter the quality of the result. This is why a
global approach is desirable, where sequences would be aver-
aged all together, with no sensitivity to their order of consider-
ation. The obvious analogy to a global method is the compu-
tation of the barycenter of a set of points in a Euclidean space.
Section 4 follows this line of reasoning in order to introduce a
global averaging strategy suitable for DTW, and provides em-
pirical evidence of its superiority over existing techniques.

The second dimension along which averaging techniques
can be classified is the way they select the elements of the mean.
We have seen that a naive use of the DTW-computed associa-
tions may lead to some sort of “overfit”, with an average cover-
ing almost every detail of every sequence, whereas simpler and
smoother averages could well provide a better description of the
set of sequences. Moreover, long and detailed averages have a
strong impact on further processing. Here again, iterative algo-
rithms like K-means are especially at risk: every iteration may
lead to a longer average, and because the complexity of DTW is
directly related to the length of the sequences involved, later it-
erations will take longer than earlier ones. In such cases, uncon-
strained averaging will not only lead to an inadequate descrip-
tion of clusters, it will also cause a severe performance degrada-
tion. This negative effect of sequence averaging is well-known,
and corrective actions have been proposed. Section 5 builds on
our averaging strategy to suggest new ways of shortening the
average.

4. A new averaging method for DTW

To solve the problems of existing pairwise averaging meth-
ods, we introduce a global averaging strategy called Dtw Barycen-
ter Averaging (DBA). This section first defines the new averag-
ing method and details its complexity. Then DBA is compared
to NLAAF and PSA on standard datasets [19]. Finally, the ro-
bustness and the convergence of DBA are studied.

4.1. Definition of DBA

DBA stands for Dtw Barycenter Averaging. It consists in a
heuristic strategy, designed as a global averaging method. DBA
is an averaging method which consists in iteratively refining
an initially (potentially arbitrary) average sequence, in order to
minimize its squared distance (DTW) to averaged sequences.

Let us provide an intuition on the mechanism of DBA. The
aim is to minimize the sum of squared DTW distances from the
average sequence to the set of sequences. This sum is formed
by single distances between each coordinate of the average se-
quence and coordinates of sequences associated to it. Thus,
the contribution of one coordinate of the average sequence to
the total sum of squared distance is actually a sum of euclidean
distances between this coordinate and coordinates of sequences



associated to it during the computation of DTW. Note that a co-
ordinate of one of the sequences may contribute to the new po-
sition of several coordinates of the average. Conversely, any co-
ordinate of the average is updated with contributions from one
or more coordinates of each sequence. In addition, minimizing
this partial sum for each coordinate of the average sequence is
achieved by taking the barycenter of this set of coordinates. The
principle of DBA is to compute each coordinate of the average
sequence as the barycenter of its associated coordinates of the
set of sequences. Thus, each coordinate will minimize its part
of the total WGSS in order to minimize the total WGSS. The
updated average sequence is defined once all barycenters are
computed.
Technically, for each refinement i.e., for each iteration, DBA
works in two steps:

1. Computing DTW between each individual sequence and
the temporary average sequence to be refined, in order
to find associations between coordinates of the average
sequence and coordinates of the set of sequences.

2. Updating each coordinate of the average sequence as the
barycenter of coordinates associated to it during the first
step.

Let S = {S1, · · · ,SN} be the set of sequences to be averaged,
let C = 〈C1, . . . ,CT 〉 be the average sequence at iteration i and
let C

′

= 〈C
′

1, . . . ,C
′

T 〉 be the update of C at iteration i + 1, of
which we want to find coordinates. In addition, each coordinate
of the average sequence is defined in an arbitrary vector space E
(e.g., usually a Euclidean space):

∀t ∈ [1,T ] ,Ct ∈ E (4)

We consider the function assoc, that links each coordinate
of the average sequence to one or more coordinates of the se-
quences of S. This function is computed during DTW compu-
tation between C and each sequence of S. The tth coordinate of
the average sequence C

′

t is then defined as:

C
′

t = barycenter (assoc (Ct)) (5)

where
barycenter {X1, . . . , Xα} =

X1 + . . . + Xα

α
(6)

(the addition of Xi is the vector addition). Algorithm 5 details
the complete DBA computation.

Then, by computing again DTW between the average se-
quence and all sequences of S, the associations created by DTW
may change. As it is impossible to anticipate how these associ-
ations will change, we propose to make C iteratively converge.
Figure 2 shows four iterations (i.e., four updates) of DBA on an
example with two sequences.

As a summary, the proposed averaging method for Dynamic
Time Warping is a global approach that can average a set of se-
quences all together. The update of the average sequence be-
tween two iterations is independent of the order with which the
individual sequences are used to compute their contribution to
the update in question. Figure 3 shows an example of an av-
erage sequence computed with DBA, on one dataset from [19].
This figure shows that DBA preserves the ability of DTW, iden-
tifying time shifts.

1

2

3

4

Figure 2: DBA iteratively adjusting the average of two sequences.



Algorithm 5 DBA
Require: C = 〈C1, . . . ,CT ′〉 the initial average sequence
Require: S1 = 〈s11 , . . . , s1T 〉 the 1st sequence to average
...

Require: Sn = 〈sn1 , . . . , snT 〉 the nth sequence to average
Let T be the length of sequences
Let assocTab be a table of size T ′ containing in each cell a set

of coordinates associated to each coordinate of C
Let m[T,T ] be a temporary DTW (cost,path) matrix

assocTab← [∅, . . . , ∅]
for seq in S do

m← DTW( C , seq )
i← T ′

j← T
while i ≥ 1 and j ≥ 1 do

assocTab[i]← assocTab[i] ∪ seq j

(i, j)← second(m[i, j])
end while

end for
for i = 1 to T do
C
′

i = barycenter(assocTab[i]) {see Equation 6}
end for
return C′

4.2. Initialization and Convergence
The DBA algorithm starts with an initial averaging and re-

fines it by minimizing its WGSS with respect to the sequences
it averages. This section examines the effect of the initialisation
and the rate of convergence.

Initialization. There are two major factors to consider when
priming the iterative refinement:

• first the length of the starting average sequence,

• and second the values of its coordinates.

Regarding the length of the initial average, we have seen in Sec-
tion 3.2 that its upper bound is T N , but that such a length cannot
reasonably be used. However, the inherent redundancy of the
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Figure 3: An example of the DBA averaging method on one cluster from the
“Trace” dataset from [19].

data lets one except that a much shorter sequence can be ade-
quate. We will observe in Section 4.5 that a length of around T
(the length of the sequences to average) performs well.

Regarding the values of the initial coordinates, it is theoreti-
cally impossible to determine the optimal values, otherwise the
whole averaging process would become useless. In methods
that require an initialisation, e.g., K-means clustering, a large
number of heuristics have been developed. We will describe
in Section 4.5 experiments with the most frequent techniques:
first, a randomized choice, and second, using an element of the
set of sequences to average. We will show empirically that the
latter gives an efficient initialisation.

Convergence. As explained previously, DBA is an iterative pro-
cess. It is necessary, once the average is computed, to update it
several times. This has the property of letting DTW refine its
associations. It is important to note that at each iteration, iner-
tia can only decrease, since the new average sequence is closer
(under DTW) to the elements it averages. If the update does not
modify the alignment of the sequences, so the Huygens’ theo-
rem applies; barycenters composing the average sequence will
get closer to coordinates of S. In the other case, if the alignment
is modified, it means that DTW calculates a better alignment
with a smaller inertia (which decreases in that case also). We
thus have a guarantee of convergence. Section 4.6 details some
experiments in order to quantify this convergence.

4.3. Complexity study
This section details the time complexity of DBA. Each iter-

ation of the iterative process is divided into two parts:

1. Computing DTW between each individual sequence and
the temporary (i.e., current) average sequence, to find as-
sociations between its coordinates and coordinates of the
sequences.

2. Updating the mean according to the associations just com-
puted.

Finding associations. The aim of Step 1 is to determine the set
of associations between each coordinate of C and coordinates of
sequences of S. Therefore we have to compute DTW once per
sequence to average, that is N times. The complexity of DTW
is Θ

(
T 2

)
. The complexity of Step 1 is therefore Θ

(
N · T 2

)
.

Updating the mean. After Step 1, each coordinate Ct of the
average sequence has a set of coordinates {p1, . . . , pαt } associ-
ated to it. The process of updating C consists in updating each
coordinate of the average sequence as the barycenter this set
of coordinates. Since the average sequence is associated to N
sequences, its T coordinates are, overall, associated to N · T
coordinates, i.e., all coordinates of sequences of S. The update
step will thus have a time complexity of Θ (N · T ).

Overall complexity. Because DBA is an iterative process, let
us note I the number of iterations. The time complexity of the
averaging process of N sequences, each one containing T coor-
dinates, is thus:

Θ (DBA) = Θ
(
I
(
N · T 2 + N · T

))
= Θ

(
I · N · T 2

)
(7)



Comparison with PSA and NLAAF. To compute an average se-
quence from two sequences, PSA and NLAAF need to compute
DTW between these two sequences, which has a time com-
plexity of Θ(T 2). Then, to compute the temporary average
sequence, PSA and NLAAF require Θ(T ) operations. How-
ever, after having computed this average sequence, it has to
be shorten to the length of averaged sequences. The classi-
cal averaging process used is Uniform Scaling which requires
Θ(T +2T +3T +· · ·+T 2) = Θ(T 3). The computation of the aver-
age sequence of two sequences requiresΘ(T 3+T 2+T ) = Θ(T 3).
The overall NLAAF averaging of a set of N sequences then re-
quires:

Θ((N − 1) · (T 3 + T 2 + T )) = Θ(N · T 3) (8)

Moreover, as PSA is using a hierarchical strategy to order se-
quences, it has at least to compute a dissimilarity matrix, which
requires Θ(N2 · T 2) operations. The overall PSA averaging of a
set of N sequences then requires:

Θ((N − 1) · (T 3 + T 2 + T ) + N2 · T 2) = Θ(N · T 3 + N2 · T 2) (9)

As I � T , the time complexity of DBA is thus smaller than
PSA and NLAAF ones.

4.4. Experiments on standard datasets

Evaluating an average sequence is not a trivial task. No
ground truth of the expected sequence is available and we saw
in Section 3 that many meanings are covered by the “average”
(or consensus) notion. Most experimental and theoretical works
use the WGSS to quantify the relative quality of an averaging
technique. Thus, to assess the performance of DBA by com-
parison with existing averaging methods, we compare DBA to
NLAAF and PSA in terms of WGSS over datasets from the
UCR classification/clustering archive [19] (see Figure 4).

Let us briefly remind what NLAAF and PSA are. NLAAF
works by placing each coordinate of the average sequence of
two sequences, as the center of each association created by
DTW. PSA associates each connected component of the graph
(formed by the coupling between two sequences) to a coor-
dinate of the average sequence. Moreover, to average N se-
quences, it uses a hierarchical method to average at first closest
sequences.

Experimental settings. To make these experiments reproducible,
we provide here the details about our experimental settings:

• all programs are implemented in Java and run on a Core
2 Duo processor running at 2.4 GHz with 3 GB of RAM;

• the distance used between two coordinates of sequences
is the squared Euclidean distance. As the square function
is a strictly increasing function on positive numbers, and
because we only use comparisons between distances, it
is unnecessary to compute square roots. The same opti-
mization has been used in [31], and seems rather com-
mon;
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Figure 4: Sample instances from the test datasets. One time series from each
class is displayed for each dataset.

• sequences have been normalized with Z-score: for each
sequence, the mean x̄ and standard deviation σ of the
coordinate values are computed, and each coordinate yi

is replaced by:

y′i =
yi − x̄
σ

(10)

• we compare DBA to NLAAF on all datasets from [19]
and to PSA using results given by [21];

• as we want to test the capacity of DBA to minimize the
WGSS, and because we do not focus on supervised meth-
ods, we put all sequences from both train and test dataset
together;

• for each set of sequences under consideration, we report
the inertia under DBA and other averaging techniques.
To provide quantitative evaluation, we indicate the ratio
between the inertia with respect to the average computed
by DBA and those computed by NLAAF and/or PSA
(see the tables below). To provide an overall evaluation,



Intraclass inertia
Dataset NLAAF DBA DBA

NLAAF
50words 11.98 6.21 52 %

Adiac 0.21 0.17 81 %
Beef 29.90 9.50 32 %
CBF 14.25 13.34 94 %

Coffee 0.72 0.55 76 %
ECG200 11.34 6.95 61 %
FaceAll 17.77 14.73 83 %

FaceFour 34.46 24.87 72 %
Fish 1.35 1.02 75 %

GunPoint 7.24 2.46 34 %
Lighting2 194.07 77.57 40 %
Lighting7 48.25 28.77 60 %
OliveOil 0.018261 0.018259 100 %
OSULeaf 53.03 22.69 43 %

SwedishLeaf 2.50 2.21 88 %
Synthetic control 9.71 9.28 96 %

Trace 1.65 0.92 56 %
Two patterns 9.19 8.66 94 %

Wafer 54.66 30.40 56 %
Yoga 40.07 37.27 93 %

Table 1: Comparison of intraclass inertia under DTW between NLAAF and
DBA.

Intraclass inertia
Dataset PSA DBA DBA

PS A
Beef 25.65 9.50 37 %

Coffee 0.72 0.55 76 %
ECG200 9.16 6.95 76 %
FaceFour 33.68 24.87 74 %

Synthetic control 10.97 9.28 85 %
Trace 1.66 0.92 56 %

Table 2: Comparison of intraclass inertia under DTW between PSA and DBA.

the text also sometimes mentions geometric averages of
these ratios.

Intraclass inertia comparison. In this first set of experiments,
we compute an average for each class in each dataset. Table 1
shows the global WGSS obtained for each dataset. We notice
that, for all datasets, DBA reduces/improves the intraclass in-
ertia. The geometric average of the ratios shown in Table 1 is
65 %.

Table 2 shows a comparison between results of DBA and
PSA. Here again, for all results published in [21], DBA outper-
forms PSA, with a geometric average of inertia ratios of 65 %.

Actually, such a decreases of inertia show that old averaging
methods could not be seriously considered for machine learning
use.

Global dataset inertia. In the previous paragraph, we com-
puted an average for each class in each dataset. In this para-
graph, the goal is to test robustness of DBA with more data
variety. Therefore, we average all sequences of each dataset.

Global dataset inertia
Dataset NLAAF DBA DBA

PS A
50words 51 642 26 688 52 %

Adiac 647 470 73 %
Beef 3 154 979 31 %
CBF 21 306 18 698 88 %

Coffee 61.60 39.25 64 %
ECG200 2 190 1 466 67 %
FaceAll 72 356 63 800 88 %

FaceFour 6 569 3 838 58 %
Fish 658 468 71 %

GunPoint 1 525 600 39 %
Lighting2 25 708 9 673 38 %
Lighting7 14 388 7 379 51 %
OliveOil 2.24 1.83 82 %
OSULeaf 30 293 12 936 43 %

SwedishLeaf 5 590 4 571 82 %
Synthetic control 17 939 13 613 76 %

Trace 22 613 4 521 20 %
Two patterns 122 471 100 084 82 %

Wafer 416 376 258 020 62 %
Yoga 136 547 39 712 29 %

Table 3: Comparison of global dataset inertia under DTW between NLAAF
and DBA.

This means that only one average sequence is computed for a
whole dataset. That way, we compute the global dataset inertia
under DTW with NLAAF and DBA, to compare their capacity
to summarize mixed data.

As can be seen in Table 3, DBA systematically reduces/improves
the global dataset inertia with a geometric average ratio of 56 %.
This means that DBA not only performs better than NLAAF
(Table 1), but is also more robust to diversity.

4.5. Impact of initialisation

DBA is deterministic once the initial average sequence C is
chosen. It is thus important to study the impact of the choice
of the initial mean on the results of DBA. When used with
K-means, this choice must be done at each iteration of the al-
gorithm, for example by taking as the initialisation the average
sequence C obtained at the previous iteration. However, DBA
is not limited to this context.

We have seen in Section 4.2 that two aspects of initialisa-
tion have to be evaluated empirically: first, the length of the ini-
tial average sequence, and second the values of its coordinates.
We have designed three experiments on some of the datasets
from [19]. Because these experiments require heavy computa-
tions, we have not repeated the computation on all data sets.

1. The first experiment starts with randomly generated se-
quences, of lengths varying from 1 to 2T , where T is the
length of the sequences in the data set. Once the length
is chosen, the coordinates are generated randomly with a
normal distribution of mean zero and variance one. The
curves on Figure 5 show the variation of inertia with the
length.



100 200 300 400 500

Length of the mean

10

In
e
rt

ia

T

Random sequences
Random sequence of length T (100 runs)
Sequence from the dataset (100 runs)

(a) 50words

100 200 300

Length of the mean

0,1

1

10

In
e
rt

ia

T

Random sequences
Random sequence of length T (100 runs)
Sequence from the dataset (100 runs)

(b) Adiac

200 400 600 800

Length of the mean

10

In
e
rt

ia

T

Random sequences
Random sequence of length T (100 runs)
Sequence from the dataset (100 runs)

(c) Beef

50 100 150 200 250

Length of the mean

10

In
e
rt

ia

T

Random sequences
Random sequence of length T (100 runs)
Sequence from the dataset (100 runs)

(d) CBF

100 200 300 400 500

Length of the mean

1

10

In
e
rt

ia

T

Random sequences
Random sequence of length T (100 runs)
Sequence from the dataset (100 runs)

(e) Coffee

50 100 150

Length of the mean

10

100

In
e
rt

ia

T

Random sequences
Random sequence of length T (100 runs)
Sequence from the dataset (100 runs)

(f) ECG200

Figure 5: Impact of different initialisation strategies on DBA. Note that the
Inertia is displayed with logarithmic scale.

2. Because the previous experiment shows that the optimal
inertia is attained with an initial sequence of length in the
order of T , we have repeated the computation 100 times
with different, randomly generated initial sequences of
length T : the goal of this experiment is to measure how
stable this heuristic is. Green triangles on Figure 5 show
the inertias with the different random initialisations of
length T .

3. Because priming DBA with a sequence of length T seems
to be an adequate choice, we have tried to replace the ran-
domly generated sequence with one drawn (randomly)
from the dataset. We have repeated this experiment 100
times. Red triangles on Figure 5 show the inertias with
the different initial sequences from the dataset.

Our experiments on the choice of the initial average se-
quence lead to two main conclusions. First, an initial average
of length T (the length of the data sequences) is the most appro-
priate. It almost always leads to the minimal inertia. Second,
randomly choosing an element of the dataset leads to the least
inertia on almost all cases. Using some data to prime an it-
erative algorithm is part of the folklore. DBA is another case
where it performs well. We have used this strategy in all our
experiments with DBA.

Moreover, in order to compare the impact of the initialisa-
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Figure 6: Effect of initialisation on NLAAF and DBA.
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Figure 7: Convergence of the iterative process for the 50words dataset.

tion on DBA and on NLAAF, we perform 100 computations of
the average on few datasets (because of computing times), by
choosing a random sequence from the dataset as an initialisa-
tion of DBA. As NLAAF is sensitive to the initialisation too, the
same method is followed, in order to compare results. Figure
6 presents the mean and standard deviation of the final inertia.
The results of DBA are not only better than NLAAF (shown
on the left part of Figure 6), but the best inertia obtained by
NLAAF is even worse as the worst inertia obtained by DBA
(see the table on the right of Figure 6).

4.6. Convergence of the iterative process

As explained previously, DBA is an iterative process. It is
necessary, once the average is computed, to update it several
times. This has the property of letting DTW refine its asso-
ciations. Figure 7(a) presents the average convergence of the
iterative process on the 50words dataset. This dataset is diverse
enough (it contains 50 different classes) to test the robustness
of the convergence of DBA.

Besides the overall shape of the convergence curve in Fig-
ure 7(a), it is important to note that in some cases, the conver-
gence can be uneven (see Figure 7(b) for an example). Even
if this case is somewhat unusual, one has to keep in mind that
DTW makes nonlinear distortions, which cannot be predicted.
Consequently, the convergence of DBA, based on alignments,
cannot be always smooth.



5. Optimization of the mean by length shortening

We mentioned in Section 3.4 that algorithms such as NLAAF
need to reduce the length of a sequence. Actually, this problem
is more global and concerns the scaling problem of a sequence
under time warping. Many applications working with subse-
quences or even with different resolutions2 require a method to
uniformly scale a sequence to a fixed length. This kind of meth-
ods is generally called Uniform Scaling; further details about its
inner working can be found in [31].

Unfortunately, the use of Uniform Scaling is not always co-
herent in the context of DTW, which computes non-uniform
distortions. To avoid the use of Uniform Scaling with DTW, as
done in [15, 21, 31], we propose here a new approach specifi-
cally designed for DTW. It is called Adaptive Scaling, and aims
at reducing the length of a sequence with respect to one or more
other sequences. In this section, we first recall the definition of
Uniform Scaling, then we detail the proposed approach and fi-
nally its complexity is studied and discussed.

5.1. Uniform Scaling

Uniform Scaling is a process that reduces the length of a
sequence with regard to another sequence. Let A and B be two
sequences. Uniform Scaling finds the prefix Asub of A such that,
scaled up to B, DTW (Asub, B) is minimal. The subsequence
Asub is defined by:

Asub = argmin
i∈[1,T ]

{DTW
(
A1,i, B

)
} (11)

Uniform Scaling has two main drawbacks: one is directly linked
to the method itself, and one is linked to its use with DTW. First,
while Uniform Scaling considers a prefix of the sequence (i.e., a
subsequence), the representativeness of the resulting mean us-
ing such a reduction process can be discussed. Second, Uni-
form Scaling is a uniform reduction process, whereas DTW
makes non-uniform alignments.

5.2. Adaptive Scaling

We propose to make the scaling adaptive. The idea of the
proposed Adaptive Scaling process is to answer to the following
question: “How can one remove a point from a sequence, such
as the distance to another sequence does not increase much?”
To answer this question, Adaptive Scaling works by merging
the two closest successive coordinates.

To explain how Adaptive Scaling works, let us start with
a simple example. If two consecutive coordinates are identical,
they can be merged. DTW is able to stretch the resulting coordi-
nate and so recover the original sequence. This fusion process
is illustrated in Figure 8. Note that in this example, DTW gives
the same score in Figure 8(a) as in Figure 8(b).

This article focuses on finding an average sequence consis-
tent with DTW. Performances of DBA have been demonstrated
on an average sequence of length arbitrarily fixed to T . In this

2The resolution in this case is the number of samples used to describe a
phenomenon. For instance, a music can be sampled with different bit rates.

(a) Alignment of two sequences: sequence below is composed of
two same coordinates

(b) Alignment of two sequences: sequence below is composed of
only one coordinate

Figure 8: Illustration of the length reduction process

context, the question is to know if this average sequence can
be shortened, without making a less representative mean (i.e.,
without increasing inertia). We show in the first example, that
the constraint on inertia is respected. Even if Uniform Scal-
ing could be used to reduce the length of the mean, an adaptive
scaling would give better results, because DTW is able to make
deformations on the time axis. Adaptive Scaling is described in
Algorithm 6.

Algorithm 6 Adaptive Scaling
Require: A = 〈A1, . . . , AT 〉

while Need to reduce the length of A do
(i, j)← successive coordinates with minimal distance
merge Ai with A j

end while
return A

Let us now explain how the inertia can also decrease by
using Adaptive Scaling. Figure 9 illustrates the example used
below. Imagine now that the next to last coordinate CT−1 of
the average sequence is perfectly aligned with the last α coor-
dinates of the N sequences of S. In this case, the last coordi-
nate CT of the average sequence must still be, at least, linked to
all last coordinates of the N sequences of S. Therefore, as the
next to last coordinate was (in this example) perfectly aligned,
aligning the last coordinate will increase the total inertia. This
is why Adaptive Scaling is not only able to shorten the average
sequence, but also to reduce the inertia. Moreover, by checking
the evolution of inertia after each merging, we can control this
length reduction process, and so guarantee the improvement of
inertia. Thus, given the resulting mean of DBA, coordinates
of the average sequence can be successively merged as long as
inertia decreases.



Figure 9: Average sequence is drawn at the bottom and one sequence of the set
is drawn at the top.

Intraclass inertia Length of the mean
Dataset DBA DBA+AS DBA DBA+AS
50words 6.21 6.09 270 151

Adiac 0.17 0.16 176 162
CBF 13.34 12.11 128 57

FaceAll 14.73 14.04 131 95
Fish 1.02 0.98 463 365

GunPoint 2.46 2.0 150 48
Lighting2 77.57 72.45 637 188
Lighting7 28.77 26.97 319 137
OliveOil 0.018259 0.01818 570 534
OSULeaf 22.69 21.96 427 210

SwedishLeaf 2.21 2.07 128 95
Two patterns 8.66 6.99 128 59

Wafer 30.40 17.56 152 24
Yoga 37.27 11.57 426 195
Beef 9.50 9.05 470 242

Coffee 0.55 0.525 286 201
ECG200 6.95 6.45 96 48
FaceFour 24.87 21.38 350 201

Synthetic control 9.28 8.15 60 33
Trace 0.92 0.66 275 108

Table 4: Inertia comparison of intraclass inertias and lengths of resulting means
with or without using the Adaptive Scaling (AS) process.

5.3. Experiments

Table 4 gives scores obtained by using Adaptive Scaling af-
ter the DBA process on various datasets. It shows that Adaptive
Scaling alone always reduces the intraclass inertia, with a ge-
ometric average of 84 %. Furthermore, the resulting average
sequences are much shorter, by almost two thirds. This is an
interesting idea of the minimum necessary length for respre-
senting a tim behaviour.

In order to demonstrate that Adaptive Scaling is not only
designed for DBA, Figure 10 shows its performances as a re-
ducing process in NLAAF. Adaptive Scaling is here used to re-
duce the length of a temporary pairwise average sequence (see
Section 3.4). Figure 10 shows that Adaptive Scaling used in
NLAAF leads to scores similar to the ones achieved by PSA.

5.4. Complexity

Adaptive Scaling (AS) consists in merging the two closest
successive coordinates in the sequence. If we know ahead of
time the number K of coordinates that must be merged, for ex-
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Figure 10: Adaptive Scaling: benefits of the reduction process for NLAAF.

ample using AS for NLAAF to be scalable, it requires a time
complexity of Θ(K · T ), and is thus tractable.

One could however need to guarantee that Adaptive Scaling
does not merge too many coordinates. That is why we suggest
to control the dataset inertia, by computing it and by stopping
the Adaptive Scaling process if inertia increases. Unfortunately,
computing the dataset inertia under DTW takes Θ

(
N · T 2

)
. Its

complexity may prevent its use in some cases.
Nevertheless, we give here some interesting cases, where

the use of Adaptive Scaling could be beneficial, because hav-
ing shorter sequences means spending less time in computing
DTW. In databases, the construction of indexes is an active re-
search domain. The aim of indexes is to represent data in a
better way while being fast queryable. Using Adaptive Scal-
ing could be used here, because it correctly represents data and
reduces the DTW complexity for further queries. The construc-
tion time of the index is here negligible compared to the mil-
lions of potential queries. Another example is (supervised or
unsupervised) learning, where the learning time is often neg-
ligible compared to the time spent in classification. Adaptive
Scaling could be very useful in such contexts, and can be seen
in this case as an optimization process, more than an alternative
to Uniform Scaling.

6. Application to clustering

Even if DBA can be used in association to DTW out of the
context of K-means (and more generally out of the context of
clustering), it is interesting to test the behaviour of DBA with
K-means because this algorithm makes a heavy use of averag-
ing. Most clustering techniques with DTW use the K-medoids
algorithm, which does not require any computation of an aver-
age [15–18]. However K-medoids has some problems related to
its use of the notion of median: K-medoids is not idempotent,
which means that its results can oscillate. Whereas DTW is one
of the most used similarity on time series, it was not possible to
use it reliably with well-known clustering algorithms.

To estimate the capacity of DBA to summarize clusters, we
have tested its use with the K-means algorithm. We present
here different tests on standard datasets and on a satellite image



Intracluster inertia
Dataset NLAAF DBA DBA

NLAAF
50words 5 920 3 503 59 %

Adiac 86 84 98 %
Beef 393 274 70 %
CBF 12 450 11 178 90 %

Coffee 39.7 31.5 79 %
ECG200 1 429 950 66 %
FaceAll 34 780 29 148 84 %

FaceFour 3 155 2 822 89 %
Fish 221 324 147 %

GunPoint 408 180 44 %
Lighting2 16 333 6 519 40 %
Lighting7 6 530 3 679 56 %
OliveOil 0.55 0.80 146 %
OSULeaf 13 591 7 213 53 %

SwedishLeaf 2 300 1 996 87 %
Synthetic control 5 993 5 686 95 %

Trace 387 203 52 %
Two patterns 45 557 40 588 89 %

Wafer 157 507 108 336 69 %
Yoga 73 944 24 670 33 %

Table 5: Comparison of intracluster inertia under DTW between NLAAF and
DBA

time series. Here again, result of DBA are compared to those
obtained with NLAAF.

6.1. On UCR datasets

Table 5 shows, for each dataset, the global WGSS resulting
from a K-means clustering. Since K-means requires initial cen-
ters, we place randomly as many centers as there are classes in
each dataset. As shown in the table, DBA outperforms NLAAF
in all cases except for Fish and OliveOil datasets. Including
these exceptions, the inertia is reduced with a geometric aver-
age of 72 %.

Let us try to explain the seemingly negative results that ap-
pear in Table 5. First, on OliveOil, the inertia over the whole
dataset is very low (i.e., all sequences are almost identical; see
Figure 4), which makes it difficult to obtain meaningful results.
The other particular dataset is Fish. We have seen, in Section
4.4, that DBA outperforms NLAAF provided it has meaningful
clusters to start with. However, here, the K-means algorithm
tries to minimize this inertia in grouping elements in “centroid
form”. Thus, if clusters to identify are not organized around
“centroids”, this algorithm may converge to any local minima.
In this case, we explain this exceptional behaviour on Fish as
due to non-centroid clusters. We have shown in Section 4.4
that, if sequences are averaged per class, DBA outperforms all
results, even those of these two datasets. This means that these
two seemingly negative results are linked to the K-means al-
gorithm itself, that converges to a less optimal local minimum
even though the averaging method is better.

· · ·

1 2 · · · n − 1 n

Figure 11: Extract of the Satellite Image Time Serie of Kalideos used. c©CNES
2009 – Distribution Spot Image

6.2. On satellite image time series

We have applied the K-means algorithm with DTW and DBA
in the domain of satellite image time series analysis. In this
domain, each dataset (i.e., sequence of images) provides thou-
sands of relatively short sequences. This kind of data is the op-
posite of sequences commonly used to validate time sequences
analysis. Thus, in addition to evaluate our approach on small
datasets of long sequences, we test our method on large datasets
of short sequences.

Our data are sequences of numerical values, corresponding
to radiometric values of pixels from a Satellite Image Time Se-
ries (SITS). For every pixel, identified by its coordinates (x, y),
and for a sequence of images 〈I1, . . . , In〉, we define a sequence
as 〈I1(x, y), . . . , In(x, y)〉. That means that a sequence is identi-
fied by coordinates x and y of a pixel (not used in measuring
similarity), and that the values of its coordinates are the vectors
of radiometric values of this pixel in each image. Each dataset
contains as many sequences as there are pixels in one image.

We have tested DBA on one SITS of size 450×450 pixels,
and of length 35 (corresponding to images sensed between 1990
and 2006). The whole experiment thus deals with 202, 500
sequences of length 35 each, and each coordinate is made of
three radiometric values. This SITS is provided by the Kalideos
database [32] (see Figure 11 for an extract).

We have applied the K-means algorithm on this dataset, with
a number of clusters of ten or twenty, chosen arbitrarily. Then
we computed the sum of intraclass inertia after five or ten iter-
ations.

Table 6 summarizes results obtained with different parame-
ters.

We can note that scores (to be minimized) are always or-
dered as NLAAF > DBA > DBA+AS, which tends to confirm
the behaviour of DBA and Adaptive Scaling. As we could ex-
pect, Adaptive Scaling permits to significantly reduce the score
of DBA. We can see that even if the improvement seems less
satisfactory, than those obtained on synthetic data, it remains
however better than NLAAF.

Let us try to explain why the results of DBA are close to
those of NLAAF. One can consider that when clusters are close
to each other, then the improvement is reduced. The most likely
explanation is that, by using so short sequences, DTW has not
much material to work on, and that the alignment it finds early
have little chance to change over the successive iterations. In
fact, the shorter the sequences are, the closer DTW is from the
Euclidean distance. Moreover, NLAAF makes less errors when
there is no re-alignment between sequences. Thus, when se-



Nb Nb Inertia
seeds iterations NLAAF DBA DBA and AS

10 5 2.82 × 107 2.73 × 107 2.59 × 107

20 5 2.58 × 107 2.52 × 107 2.38 × 107

10 10 2.79 × 107 2.72 × 107 2.58 × 107

20 10 2.57 × 107 2.51 × 107 2.37 × 107

Table 6: Comparison of intracluster inertia of K-means with different parame-
terizations. Distance used is DTW while averaging methods are NLAAF, DBA
and DBA followed by Adaptive Scaling (AS).

Figure 12: The average of one of the clusters produced by K-means on the satel-
lite image time series. This sequence corresponds to the thematical behaviour
of the urban growth (construction of buildings, roads, etc.). The three rectan-
gles corresponds to three phases: vegetation or bare soil, followed by new roofs
and roads, followed by damaged and dusty roofs and roads.

quences are small, NLAAF makes less errors. For that reason,
even if DBA is in this case again better than NLAAF, the im-
provement is smaller.

Let us now explain why Adaptive Scaling is so useful here.
In SITS, there are several evolutions which can be considered
as random perturbations. Thus, the mean may not need to rep-
resent these perturbations, and we think that shorter means are
sometimes better, because they can represent a perturbed con-
stant subsequence by a single coordinate. Actually, this is often
the case in SITS. As an example, a river can stay almost the
same over a SITS and one or two coordinates can be sufficient
to represent the evolution of such an area.

From a thematic point of view, having an average for each
cluster of radiometric evolution sequences highlights and de-
scribes typical ground evolutions. For instance, the experiment
just described provides a cluster representing a typical urban
growth behaviour (appearance of new buildings and urban den-
sification). This is illustrated on Figure 12. Combining DTW
with DBA has led to the extraction of urbanizing zones, but
has also provided a symbolic description of this particular be-
haviour. Using euclidean distance instead of DTW, or any other
averaging technique instead of DBA, has led to inferior results.
Euclidean distance was expected to fail somehow, because ur-
banization has gone faster in some zones than in others, and
because the data sampling is non uniform. The other averaging
methods have also failed to produce meaningful results, prob-
ably because of the intrinsic difficulty of the data (various sen-
sors, irregular sampling, etc.), which leads to difficultly separa-

ble objects. In such cases, less precise averaging tends to blur
cluster boundaries.

7. Conclusion

The DTW similarity measure is probably the most used
and useful tool to analyse sets of sequences. Unfortunately,
its applicability to data analysis was reduced because it had
no suitable associated averaging technique. Several attempts
have been made to fill the gap. This article proposes a way
to classify these averaging methods. This “interpretive lens”
permits to understand where existing techniques could be im-
proved. In light of this contextualization, this article defines
a global averaging method, called Dtw Barycenter Averaging
(DBA). We have shown that DBA achieves better results on all
tested datasets, and that its behaviour is robust.

The length of the average sequence is not trivial to choose.
It has to be as short as possible, but also sufficiently long to
represent the data it covers. This article also introduces a short-
ening technique of the length of a sequence called Adaptive
Scaling. This process is shown to shorten the average sequence
in adequacy to DTW and to the data, but also to improve its
representativity.

Having a sound averaging algorithm lets us apply clustering
techniques to time series data. Our results show again a signif-
icant improvement in cluster inertia compared to other tech-
niques, which certainly increases the usefulness of clustering
techniques.

Many application domains now provide time-based data and
need data mining techniques to handle large volumes of such
data. DTW provides a good similarity measure for time series,
and DBA complements it with an averaging method. Taken to-
gether, they constitute a useful foundation to develop new data
mining systems for time series. For instance, satellite imagery
has started to produce satellite image time series, containing
millions of sequences of multi-dimensional radiometric data.
We have briefly described preliminary experiments in this do-
main.

We believe this work opens up a number of research direc-
tions. First, because it is, as far as we know, the first global ap-
proach to the problem of averaging a set of sequences, it raises
interesting questions on the topology of the space of sequences,
and on how the mean relates to the individual sequences.

Regarding Dtw Barycenter Averaging proper, the are still a
few aspects to be studied. One aspect could be the choice of the
initial sequence where sequences to be averaged do not have
the same length. Also we have provided an empirical analy-
sis of the rate of convergence of the averaging process. More
theoretical or empirical work is needed to derive a more robust
strategy, able to adjust the number of iterations to perform. An
orientation of this work could be the study of the distribution
of coordinates contributing to a coordinate of the average se-
quence. Eventually, averaging very small datasets with DBA
could be a limitation that should be studied.

Adaptive Scaling has important implications on performance
and relevance. Because of its adaptive nature, it ensures that



average sequences have “the right level of detail” on appropri-
ate sequence segments. It currently considers only the coor-
dinates of the average sequence. Incorporating averaged se-
quences may lead to a more precise scaling, but would require
more computation time. Finding the right balance between cost
and precision requires further investigation.

When combining DBA with Adaptive Scaling, e.g., when
building reduced average sequences, we have often noticed that
they provide short summaries, that are at the same time easy to
visualize and truly representative of the underlying phenomenon.
For instance, the process of length reduction builds an average
sequence around the major states of the data. It thus provides a
sampling of the dataset built from the data themselves. Exploit-
ing and extending this property is a promising research direc-
tion.
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