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Abstract

Machine learning researchers are facing a data deluge –

quantities of training data have been increasing at a rapid

rate. However, most of machine learning algorithms were

proposed in the context of learning from relatively smaller

quantities of data. We argue that a big data classifier should

have superior feature engineering capability, minimal tuning

parameters and should be able to learn decision boundaries

in fewer passes through the data. In this paper, we have

proposed an (computationally) efficient yet (classification-

wise) effective family of learning algorithms that fulfils these

properties. The proposed family of learning algorithms is

based on recently proposed accelerated higher-order logistic

regression algorithm: ALRn. The contributions of this work

are three-fold. First, we have added the functionality of

out-of-core learning in ALRn, resulting in a limited pass

learning algorithm. Second, superior feature engineering

capabilities are built and third, a far more efficient (memory-

wise) implementation has been proposed. We demonstrate

the competitiveness of our proposed algorithm by comparing

its performance not only with state-of-the-art classifier in

out-of-core learning such as Selective KDB but also with

state-of-the-art in in-core learning such as Random Forest.

Keywords — Higher-order Logistic Regression, Fea-

ture Engineering, Tuple/Feature Selection, SGD, Adaptive

Step-Size

1 Introduction

The continuous growth in the amount of training data
brings new challenges to machine learning researchers
and practitioners. [6, 11, 10]. Most machine learning
algorithms were developed in the context of smaller
quantities of data. On these small quantities, simple
linear classifiers were to be preferred over non-linear
classifiers (which, of course, resulted in complex decision
boundaries), as variance contributed most to the error.
A well-known widely used example of a linear classifier is
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Logistic Regression (LR), which optimizes the following
objective function:

NLL(β)=
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exp(−βT
c x

(i))

)
+ λ||β||2,

where NLL stands for Negative Log-Likelihood. It can
be seen that the resulting model will be highly biased
if the data is not linearly separable. Recently, it has
been shown in [16] that one can reduce the bias of LR
by taking into account higher-order feature interactions.
The resulting ALRn (Accelerated higher-order Logistic
Regression) model optimizes the following objective
function:

NLL(β)=

N∑
i=1

(
βT

y fn(x(i))−log

C∑
c

exp(−βT
c fn(x(i)))

)
+λ||β||2,

where the function fn(x) = vec(lowDiag(fn−1(x)xT ))
and fn=1(x) = x. Here, the function lowDiag returns
the lower-diagonal terms of the matrix and the function
vec vectorizes them. Note, the model is still linear in
β, but now, it is incorporating all n-order interactions.
It can be seen that this greatly increases the number
of parameters to be learned (size of the vector β),
and, therefore, an efficient implementation is warranted.
Nonetheless, increasing the value of n in ALRn leads to
lower-biased models 1.

Let us first describe the main symbols and notations
used in this work. We will use N to denote the number
of data points, |A| is the number of attributes, C is the
number of classes and n denotes the order in higher-
order LR model. The symbols in bold face are vectors.
The parameter to be optimized is: βy – since, we are
optimizing the softmax objective function, each class
y has its own associated parameter vector, hence the
subscript y. We will make a distinction between the
terms tuple, feature and parameter. A tuple denotes a
set of attributes, e.g. T12,5 = {att12, att5} is a tuple
of order 2 consisting of attributes 12 and 5. Note
the elements of the tuples are always in decreasing

1E.g., ALRn with n = 2 is a quadratic model, that can not
only capture quadratic interactions but also linear interactions.

On the other hand, a linear model can not take into account
quadratic terms. Hence ALR2 will be lower biased.



order. This ensures the uniqueness of the tuples.
A feature, on the other hand, is the instantiation of the
attribute values in the tuple, e.g, F12:1,5:3 = {att12 =
1, att5 = 3} is a feature of order 2 with attribute 12
taking value 1 and attribute 5 taking value 3. We
use the term parameter for an element in any vector
that is to be optimized, e.g, as described before, β
is the parameter vector. Each element of parameter
vector is associated with a feature and a class-value.
For example β12:1,5:3,C:2 corresponds to: feature-class
pair of {att12 = 1, att5 = 3} and {attclass = 2} or just
{att12 = 1, att5 = 3, attclass = 2}.

For larger quantities of data, an algorithm should
inherently be low-biased [1]. In other words, a model
should be expressive enough to model most of the in-
teractions that exist in the data – this capability is now
widely known as the Feature Engineering capability of a
model. We argue that the better the feature engineering
capability, the better its performance on big datasets.
Second, it is also desirable for the model to learn in few
passes through the data. This is motivated from the
fact that data in large quantities cannot be fully loaded
into the memory and, therefore, out-of-core processing
of the data is mandatory. A final property is being able
to learn with minimal tuning parameters. For larger
quantities of data, of course, a model should be able to
learn with minimum intervention. More importantly,
the model’s performance should not be critically depen-
dent on a large number of hyper-parameters.

Let us now analyze ALRn in lights of above discus-
sion to determine its suitability for learning with large
quantities of data. It can be seen, that in this regard,
there are at least two issues with ALRn:

• First, ALRn leads to a massive model. There is
no tuple or feature selection and for moderate size
datasets, training a higher-order LR will not be
feasible. There is a need for an efficient feature
engineering capability. This is one of the reasons
that in the original work [16], the maximum value
of n was set to 3.

• Second, ALRn, in its original form is in-core –
batch optimization-based methods such as Quasi-
Newton, TRON, etc. which require loading the data
into the memory and quite memory inefficient as
just one iteration of the optimization leads to many
function evaluations [15]. There is a need to learn
in minimal passes through the data.

The proposed family of algorithms in this paper is
motivated to address these shortcomings of ALRn.
We propose two new learning algorithms: sALRn and
hsALRn. Here are the salient features of our proposed
algorithms:

• The proposed algorithms processes data out-of-
core. They are limited to a maximum of 10 passes
through the data. The discriminative parameters
are optimized with an efficient Stochastic Gradient-
Descent (SGD) based method, where the step-
size is adaptive and the initial step-size is tuned
automatically.

• The algorithms are based on an efficient implemen-
tation for storing parameters. The resulting data-
structure not only helps in managing memory re-
quirements but also results in scaling to higher val-
ues of n.

• sALRn does tuple selection to reduce the model
size. It is based on a top-down approach, i.e,
all tuples at level n are evaluated and selected only
if they pass some selection test.

• hsALRn hierarchically build tuples and features.
This a bottom-up approach – lower-level tuples
and features are evaluated first and selected only
if they pass some test. The selected tuples and fea-
tures are later used to build higher-order tuples
and features.

We believe that sALRn and hsALRn are excellent
representative examples of Feature Engineering.

The rest of this paper is organized as follows: we
start by discussing related work in Section 2. We
present our proposed algorithms in Section 3 and 4.
The experimental results are given in Section 5. We
conclude in Section 6 with pointers to future works.

2 Related Work

An efficient algorithm that fulfils the three properties
of large-scale machine learning i.e, feature engineer-
ing, out-of-core data processing and minimal tuning
parameters is proposed in [9]. The resulting SKDB
(Selective K-Dependence Bayesian Network Classifier)
is a three pass learning algorithm, that is built on a
two pass K-Dependence Bayesian Classifier (KDB) al-
gorithm. A KDB classifier factorizes the joint distribu-

tion as: P(Y,X) = P(Y )
∏|A|
i=1 P(Xi|Pa(Xi)) – where

the function Pa(Xi) returns the K parents of attribute
Xi. In its first pass, it computes the mutual information
of each attribute with the class: MI(Xi|Y ) and also the
conditional mutual information of the pair of attributes
with the class: CMI(Xi, Xj |Y ). These two statistics
are used to learn the structure of the network, i.e., the
function Pa(X.).

Selective KDB adds a third pass to the standard
KDB learning algorithm and use an elegant leave-one-
out cross validation algorithm to select the best value
of K and the best number of attributes (note, the



algorithm relies on exploiting the symmetry of the
KDB model). It has been shown that SKDB leads
to comparable performance to in-core state-of-the art
classifier – Random Forest 2.

3 sALRn

Let us discuss our first proposed algorithm – Selective
(higher-order) Accelerated Logistic Regression: sALRn.
As discussed, the algorithm is based on ALRn – like
ALRn, it is based on learning both generative (θ) and
discriminative (β) parameters of the model. The gen-
erative parameters are to be used as a pre-conditioner
for the discriminative parameters which should lead to
faster convergence [13]. However, unlike ALRn, it is
far more computationally efficient due to its selection
of tuples. Furthermore, unlike ALRn, the algorithm is
only an I + 3 pass learning algorithm, where I defaults
to five – in total, three initial passes for tuple selection
and tuple evaluation, and then learning the generative
parameters, and five passes for discriminative learning
of the parameters.

The algorithm starts by allocating two data struc-
tures: DICT and BM. DICT is an index dictionary
of size T , where T is the total number of tuples. Each
element of DICT assigns an index to a tuple. The goal
is that, based on this index, and given the cardinality
of each attribute in the tuple, one can uniquely assign
a number to all possible parameters 3. BM is an array
of Booleans 4, which specifies if a certain parameter is
present in the training data or not. It can be seen that
regardless of whether a parameter is needed or not, a
bit associated with it must be present in BM. So the
size of BM can be calculated in advance.

An outline of the algorithm is given in Algorithm 1.
The first pass of the sALRn is explanatory. If a
certain feature is encountered, bits associated with
its parameters are set. The goal is to allocate memory
only for the features that are present in the data. This
drastically reduces the size of model. Secondly, sALRn,
in this pass, extracts some data (denoted by DCV) to
be used in the cross-validation step. By default, five
percent of the data is extracted and is stored in the

2Note, another relevant algorithm is an ensemble model –

Averaged-N -Dependence Estimator (AnDE), which is based on
a single pass learning algorithm. Also, feature selection (known

as SPODE selection) capability has been shown to work well for
AnDE as well [14]. We have not included AnDE results in this

work as the model in practice has similar performance to KDB.
3One could store an index for every parameter but only at

the cost of huge memory consumption. Typical method rely
on hashing the string-names of the attributes which results in

approximate solutions due to possible collisions [8].
4Most programming languages have a BitSet data structure

which returns either true or false at a particular index.

memory. Note, this step will result in creating a new
data set file on the disk with DCV removed. A stratified
reservoir sampling is done to extract DCV .

Once the BM is created and DCV is removed from
D, the cardinality of the BM: |BM| specifies the length
of the parameter vector. Note, that now, any access to
the parameter has to be through the data structures
DICT and BM. For example, to access the parameter
associated with the feature {att5 = 2, att3 = 100, att2 =
1} and class {attclass = 5}, first an index, say i, is
retrieved from DICT , which is then used to query BM.
If BM(i) returns false, the feature is not present and is
ignored, otherwise, the new index is calculated as:

BM(i) =

i−1∑

j=0

1BM(j)==1,(3.1)

where 1x=y is a function that returns one if x = y, oth-
erwise, zero. Note that the operation of Equation 3.1 is
highly optimized in all programming languages. The pa-
rameter vector θ is allocated in memory of the size of
|BM| – let us denote the size of the parameter vector
as |P|.

The second pass of sALRn involves calculating the
counts of the features and populating the θ vector. Af-
ter the pass, the counts are converted into probabilities,
M-estimate (Maximum likelihood estimates (MLE) with
Dirichlet priors on the parameter) is used for computing
probabilities. sALRn uses the probabilities of the form:
P(F|y), which is computed as:

P(F|Y = y) = (θF,y +m/|F|)/(C +m).

Note, P(F|Y = y) denotes the probability of the fea-
ture F given the class y. Also, m is fixed to 0.1 and
|F| is the cardinality of the feature F and is equal to
the sum of the product of the cardinality of attributes
in the feature.

Once the probabilities are computed, tuple selection
begins. To do that, tuples are evaluated based on their
mutual information (MI) score:

MI(T |Y ) =

C∑

y=1



|T1|∑

x′=1

. . .

|Tn|∑

x′′=1


P(F , y) log

P(F , y)

P(F)P(y)
,

where Ti denotes the i-the attribute of tuple T and |T |
its cardinality. Note, that for each possible instantiation
of attribute-values of tuple T , there is a feature F .
Hence we have left the indices for feature F in terms
P(F|y) and P(F) for simplicity of notation.

Once the tuples are evaluated based on their MI
score, top t tuples are selected and others are ignored.
This operation only requires modifying the BM data



Algorithm 1 Selective Accelerated Higher-order LR

1: procedure sALRn(D,DICT ,BM, T S, t)
2:

3: [BM,DCV ]← explorationPass(D) # Pass 1
4: θ ← allocateMemory(BM),
5: θ ← getCountsFromData(D,BM) # Pass 2

6: BM∗ ← doTupleSelection(DCV ,BM, T S, t)
7:

8: θ∗ ← allocateMemory(BM∗),
9: θ∗ ← getCountsFromData(D,BM∗) # Pass 3

10: [β, G]← allocateMemory(BM∗),
11:

12: # Algorithm 2

13: β = ALRn
SGD(D,DCV ,θ∗,β, G)

14:

15: Return β, θ∗

16: end procedure

structure, i.e., the tuples which are ignored, their
respective values are set to false. Once the BM is
modified, parameters vector θ is re-allocated. After re-
allocation, a third pass is made for re-calculating the
counts and computing the probabilities 5.

Once the generative learning is finished, the dis-
criminative learning begins. For that two more param-
eter vectors of the same size as θ (i.e., |P|) are allo-
cated: β and G. sALRn relies on only limited passes
of Stochastic Gradient-Descent (SGD). It is absolutely
necessary for SGD to pick a good step-size. Typically,
this value is tuned through cross-validation. sALRn re-
lies on adaptive step size method of AdaGrad [3]. In
essence, it accumulates gradients in each direction and
scale the step size by this sum. It, however, keeps the
question of initial step size (η0) open. sALRn learns
the value of η0 by doing cross-validation line-search on
DCV . The details of iterative line-search algorithm can
be found in Algorithm 4 and 5 in Appendix A.

The outline of the discriminative pass learning
algorithm is given in Algorithm 2. The index iter
is for the SGD iterations, the index i loops over the
data points and the index j loops over the elements of
the parameter vector. The partial derivative for data
point x(i) of the parameter j is denoted as gj , and is
computed as:

∂NLL(x(i),β)

βj
= (1y − P(y|x))1F log P(F|y),

where 1y is 1 if class label of x(i) is same as that

5Note, that this pass is optional, because one can always create

a new parameter vector θ̃, and copy contents from old vector θ
to the new one θ̃.

Algorithm 2 ALRn Discriminative Passes

1: procedure ALRn
SGD(D,DCV ,θ∗,β, G)

2: # Algorithm 4

3: η0 = determineIntialStepSize(DCV )
4:

5: for iter = 1, . . . , 5 do
6: # Pass iter + 3
7: for i = 0, 1, . . . , N do
8: for j = 0, 1, . . . , |P| do
9: ηj = η0√

Gj∗Gj

, gj = ∂NLL(x(i);β)
∂βj

10: βj = βj + ηjgj , Gj = Gj + gj
11: end for
12: end for
13: end for
14: Return β
15: end procedure

of feature indexed by j. Similarly, 1F is 1 only if
non-class attributes of x(i) is same as that of feature
indexed by j. Once the gradients are computed, they
are used to update the corresponding parameter βj and
accumulated in Gj for adapting the step-size. The
procedure terminates after five iterations over the data.

3.1 Alternative Tuple Selection An extremely
useful property of mutual information (MI) for select-
ing tuples is its computational efficiency. One can com-
pute the necessary statistics and then evaluate tuples
by just one quick pass over the data. It, however, is
not the only potential measure for selecting the tuples.
There are several alternatives, e.g., thresholding on the
counts instead of the MI, hashing, etc. [2]. A far better
alternative is to use the discriminative pass algorithm
of sALRn for tuple selection. Since looping over the en-
tire data set will be expensive, one can easily train over
much smaller dataset, i.e., DCV , that resides in mem-
ory. Note DCV will be sliced into training, testing and
validation set. This can be done once for all the tuples.
In essence, we compute the score as:

CVscore(T ) = ALRn
SGD(DCV¬T ,θ∗,β, G),

where DCV¬T is the dataset DCV but with tuple T
removed. The tuples are evaluated on the basis of
their CVscore(F) score. Higher the score, more relevant
the tuple is. Similar to MI, some t top tuples can
be selected. The Algorithm 1 takes T S as an input
parameter which actually specifies the tuple selection
criterion. Also t is the threshold parameter.

3.2 Limitations of sALRn It can be seen that
sALRn successfully alleviates the main shortcomings of



the standard ALRn method. It is out-of-core, does tu-
ple selection and relies on a more efficient implemen-
tation. There, however, is a problem. The algorithm
still relies on enumerating all the possible tuples (and
associated features and parameters) to determine their
relevance in the second stage. For many datasets, this
is not a problem, the tuple selection passes are gener-
ally computationally inexpensive, and results in greatly
speeding-up the discriminative learning by reducing the
number of parameters to be optimized. However, for
datasets with many attributes, it can be troublesome
because the size of vector θ vector will just be too big
to fit in the memory. Therefore, sALRn is limited to
smaller values of n. How can we scale tuple selection
to higher values of n? Let us now discuss a variant of
sALRn that hierarchically builds the tuples instead of
enumerating them all.

4 Hierarchical Implementation – hsALRn

Instead of enumerating all tuples, and then doing tuple
selection, Hierarchical Selective (higher-order) Acceler-
ated Logistic Regression – hsALRn builds tuples hier-
archically. Unlike sALRn, hsALRn starts by building n
index-dictionaries and BitSet data structures – one for
each level, since the tuples of order n will be build hi-
erarchically in a bottom-up manner from lower orders.
We will denote dictionary and Bitset at level i as DICT i
and BMi respectively. The algorithm starts by building
DICT 1 and BM1 (similar to sALR1).

An outline of the algorithm is given in Algorithm 3.
Again, the first pass is similar to sALR1, BM1 is
updated and DCV is extracted. The memory is allocated
for θ and a second pass is made through the data to
extract the count, followed by the tuple selection. Note,
up till this stage, the behaviour is exactly similar to
sALR1. Next, it deviates. Now i = 2, and the second
iteration of the loop begins. It initializes BM2. But,
the intitialization are based on BM1 – i.e., the tuples
which are not selected in tuple selection stage of i = 1
are ignored. In other words, the BM2 only constitutes
of bits related to top t tuples. The similar process
is repeated for i = 3 and so on. This way, at level
n, the tuples are built hierarchically from 1 to n. A
simple illustration of tuple building process is shown in
Figure 1.

Once the tuples are built (engineered), memory
is allocated for θ based on BMn, and a final pass
is made through the data to populate θ. Next, the
algorithm follows the similar path as that of sALRn,
i.e., discriminative training.

4.1 Feature Engineering As an alternative to
building tuples hierarchically, one can build features

Algorithm 3 Hierarchical Selective ALRn

1: procedure shALRn(D, T S, t)
2:

3: Intialize BM1, Intialize DICT 1

4: [BM1,DCV ]← explorationPass(D) # Pass 1
5: i = 1;
6: while i <= n do
7: if i > 1 then
8: Intialize BMi from BMi−1

9: end if
10: θ ← allocateMemory(BMi)
11: θ←getCountsFromData(D,BMi) # Pass i

12: BMi ← doTupleSelection(DCV ,BMi, T S, t)
13: i ← i + 1
14: end while
15:

16: θ∗ ← allocateMemory(BMn),
17: θ∗←getCountsFromData(D,BMn) #Pass i + 1
18: [β, G]← allocateMemory(BMn),
19:

20: # Algorithm 2

21: β = sALRn
SGD(D,DCV ,θ∗,β, G)

22:

23: Return β,θ∗

24: end procedure

instead. This is motivated from the fact that the
cardinality of tuples can vary significantly in some
datasets. E.g., some attributes might have values in
order of 106, while others in the order of 102. Of course,
the resulting size of the model at n > 1 will not decrease
significantly as long as one of these high-cardinality
attribute is present in the tuples. This limitation can
be addressed by selecting and building features, instead
of tuples. A downside of this is that since there are
many more features than tuples, the feature selection
and engineering might take much longer than working
with tuples.
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...
{att3}

9
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...
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{att19}
{att1}

...
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9
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9
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Figure 1: A schematic illustration of hsALRn feature
engineering process.



#Instances #Attributes #Features #Classes

Covtype 581012 13 333 7

SUSY 2461308 18 462 2

HIGGS 11000000 18 527 2

Activity 3850505 54 64574 19

Avazu 40428967 32 10266948 2

Table 1: Details of datasets.

5 Experimental Results

Let us compare the performance of our proposed al-
gorithms on four datasets (Covtype, SUSY, HIGGS,

Activity) from UCI repository [5] and one dataset
(Avazu) from Kaggle repository [7]. The datasets were
discretized before training using MDL discretiztaion [4]
6. The details of the datasets can be found in Table 1.
Note, since the labels for Avazu test files were not avail-
able, an 80 : 20 split of the training file has been done to
create new training and test files. All experiments are
computed on a standard computer with 64GB of RAM.

5.1 sALRn vs s(K)DB Let us start by comparing
the performance of sALRn (with no tuple selection).
A comparison of the 0-1 Loss performance of sALRn

with s(K)DB, naive Bayes and Random Forest with
100 trees is shown in Figure 2. The results are based
on two rounds of two-folds cross-validation. Let us
first establish the correspondence between sALRn and
s(K)DB in terms of the order of interactions they model.
Note, that sALR2 has tuples of length 2, i.e., it models
interactions of the form: P(x1, x2|y). On the other
hand, s(K=1)DB, models the interactions of similar
order, that is: P(x1|y, x2). Therefore, if we have a
function Q that returns the order of interactions, the
following holds Q(sALRn) = Q(s(n-1)DB).

It can be seen that in Figure 2, the results for
s(K)DB and sALRn are stacked together for match-
ing order. We also have included AnJE results for
comparison. Note, AnJE is the generative equivalent
of ALRn. The naive Bayes (NB) and Random Forest
(RF) results are plotted as a horizontal lines for com-
parison. Note that A(n=1)JE ≡ s(K=0)DB ≡ NB. It
can be seen from the results, that sALRn is an effective
limited pass learning algorithm that results in better
performance than both s(K)DB and AnJE. On SUSY

and HIGGS datasets, the results are even better than
RF. It can be seen that, on Covtype, the performance

6Note, MDL discretization requires loading the data in mem-

ory. Since some of the datasets, e.g, Activity and Avazu were
too big to be loaded into memory, the discretization was done
attribute by attribute, i.e, a single attribute was only loaded into

memory, discretized and the output was written back to the file.
A similar procedure was repeated for all the attributes.

of sALR4 gets very close to RF, however, increasing the
value of n to 5 results in out-of-memory (OOM) error.
We will shown in Section 5.2 that even with n = 4 and
with tuple selection, sALR4 can lead to performance
better than that of RF.

5.1.1 How to determine n? What is the best value
of n for sALRn? Note, s(K)DB has a sophisticated algo-
rithm to determine the best value of K. Since, sALRn is
based on both generative and discriminative parameters,
it can also rely on its (computationally efficient) gener-
ative counter-part AnJE to choose the best value of n.
One can start from n = 1 and increment the value of n
until the performance of AnJE is better on DCV . Ex-
ploration of sophisticated algorithms to determine the
best value of n has been left as a future work.

5.2 Tuple Selection for sALRn A comparison of
the 0-1 Loss performance of sALR2, sALR3 and sALR4

by varying the threshold of tuple selection on covtype

dataset is shown in Figure 3. Tuple selection is done
with both mutual information (MI) and CVScore of
Section 3.1. For sake of comparison, we also include
sALRn performance with no tuple selection as horizon-
tal dotted line. Let us first analyze tuple selection with
sALR2 (red lines). It can be seen that at n = 2, MI is
a better tuple selection method than CVScore. Also, at
t = 0.6, it results in better performance than sALR2.
However, tuple selection with sALR3 (yellow lines) and
sALR4 (blue lines) reveals that CVScore is a better cri-
terion than MI, even though both criteria leads to better
performance than sALR3.

It can be seen that sALR4 with CVScore based tuple
selection can also result in better performance than
RF (horizontal green line), an extremely encouraging
result. A similar comparison is done for SUSY and HIGGS

datasets in Figure 4.

5.2.1 How to determine t? Clearly, the optimal
value of t is data specific. Since the main motivation
behind tuple selection is to reduce the size of the model,
it depends on available computational resources. How-
ever, it is clear from Figures 3 and 4 that tuple selection
drastically improves the performance of sALRn, and,
therefore, it should not be avoided. Since MI and CVS-
core are fairly easy to compute, we recommend deter-
mining the best value of t using cross-validation.

5.3 Evaluating hsALRn Let us evaluate hsALRn

in this section. We will compare the 0-1 Loss perfor-
mance, Training Time and no. of parameters of ALRn,
sALRn and hsALRn models.

Let us compare the no. of parameters optimized
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Figure 2: A comparison of the 0-1 Loss of sALRn, s(K)DB and A(n)JE classifiers on covtype, SUSY, HIGGS datasets.

0.1 0.2 0.4 0.6 0.8 0.9

0.05

0.1

0.15

0.2

0.25

0.3

E
rr

o
r

Covtype

RF

sALR
2

sALR
2
 (MI)

sALR
2
 (CVScore)

sALR
3

sALR
3
 (MI)

sALR
3
 (CVScore)

sALR
4

sALR
4
 (MI)

sALR
4
 (CVScore)

Figure 3: A comparison of 0-1 Loss of sALR2 (MI),
sALR2 (CVScore), sALR3 (MI), sALR3 (CVScore), sALR4

(MI) and sALR4 (CVScore) by varying the tuple selection
threshold. RF, sALR2, sALR3 and sALR4 are also plotted
as horizontal line for comparison.

by these three models in Figure 5 on Covtype dataset
(using MI based tuple selection with a threshold of
0.6, 0.8 and 0.9). It can be seen that both hsALR3

and hsALR4 results in greatly reducing the number
of parameters. It is important to remember that
hsALRn is a bottom-up approach, i.e., it starts by
building parameters from an empty set. On the other
hand, sALRn is top-down, i.e., it starts with the full
ALRn model and reduces its size.

A comparison of the training time of the three
models is given in Figure 6. It can be seen that, hsALRn

results in greatly reducing the training time of sALRn

and ALRn. Of course this is due to a reduced number
of training parameters. Let us now see the effect of
these reduced no. of parameters and faster training time
on the 0-1 Loss results. The 0-1 Loss comparison is
shown in Figure 7. Well, it can be seen that, except
for t = 0.6 for n = 3, there is not a huge difference in
the performance of sALRn and hsALRn. With greatly
reduced number of parameters, faster training time, this
is very encouraging result.

A similar comparison in terms of the no. of pa-
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Figure 4: A comparison of 0-1 Loss of sALR2 (MI), sALR2

(CVScore) by varying the tuple selection threshold. RF,
sALR2 are also plotted as horizontal line for comparison.
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Figure 5: A comparison of the no. of parameters of
ALRn, sALRn and hsALRn with different thresholds of tuple
selection. Left: n = 3, Right: n = 4.

rameters, training time and the error is done for SUSY

and HIGGS datasets in Table 2. Note, due to space con-
straints, only results are shown for threshold t = 0.9
with MI.

5.4 Tuple vs. Feature Selection for hsALRn

So far, our evaluation has been constrained to tuple
selection. Let us now focus on extremely big datasets
of Table 1 – Activity and Avazu 7. Simple ALR2

on these datasets will lead to a model too big to be
processed by standard computers. In fact, s(K=1)DB

7Out of around 30 attributes, there are two attributes in this

dataset with over 106 values. This property makes it suitable
for feature selection rather than tuple selection.
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Figure 6: A comparison of the training time of ALRn,
sALRn and hsALRn with different thresholds of tuple se-
lection. Left: n = 3, Right: n = 4.
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Figure 7: A comparison of 0-1 Loss performance of ALRn,
sALRn and hsALRn with different thresholds of tuple selec-
tion. Left: n = 3, Right: n = 4.

and RF (even with 10) trees resulted in out-of-memory
(OOM) error on our experimentation hardware. We
compare the performance of different models on these
two datasets in Table 3. The results are obtained in a
train-test scheme. An 80 : 20 split of the available data
is used to create training and test files. Two versions
of hsALRn are reported. hsALRn is the standard
one with tuple selection and hsALRn(∗) is the one
with feature selection.

It can be seen that on the Activity dataset, the
best result is obtained by sALR2 with tuple selection,
resulting in an error of 0.0011 (t = 0.2 with MI). Both
hsALR2 and hsALR2(∗), results in reducing the size
of the model, but results in slightly worst performance
than sALR2.

For the Avazu dataset, only results are reported for
NB, ALR1, and hsALR2(∗) (t = 0.1 with MI). Other
techniques could not be used because of the presence of
very high cardinality features in this dataset. It can be
seen that hsALR2(∗) leads to the best result of 0.1219.

6 Conclusion and Future Works

In this paper, we proposed two simple yet effective al-
gorithms for learning from extremely large data quan-
tities. The algorithms are motivated from the need of
a better feature engineering capability, out-of-core data
processing and minimal tuning parameters. Our pro-

ALR2 sALR2 hsALR2 ALR2 sALR2 hsALR2

SUSY HIGGS

#Parameters 272k 256k 108k 258k 243k 121k

Training Time 460 1287 919 2316 3219 2200

Error 0.1989 0.1985 0.1988 0.2629 0.2620 0.2600

Table 2: A comparison of no. of parameters, training time
and 0-1 Loss performance of ALR2, sALR2 and hsALR2 with
t = 2 of tuple selection.

NB ALR1 ALR2 sALR2 hsALR2 hsALR2(∗)

Activity

#Parameters 1.2M 1.2M 250M 136M 111M 101M

Training Time 52 1596 3121 2771 2300 6511

Error 0.092 0.0115 0.0012 0.0011 0.0030 0.0045

Avazu

#Parameters 20M 20M OOM OOM OOM 280M

Training Time 189 2321 OOM OOM OOM 10199

Error 0.3004 0.1732 OOM OOM OOM 0.1219

Table 3: A comparison of the no. of parameters, training
time and 0-1 Loss performance of NB, ALR1, sALR2,
hsALR2, hsALR2(∗) and FM2.

posed algorithm sALRn is based on standard acceler-
ated higher-order logistic regression (ALRn). It adds
the functionality of tuple and feature selection and out-
of-core limited pass learning. The second proposed al-
gorithm hsALRn hierarchically builds tuples and fea-
tures. We show that the resulting algorithms lead to
better (classification error) performance than the cur-
rent state-of-the-art in out-of-core data processing and
also competitive with state-of-the-art in-core classifier
Random Forest. There are many exciting new direc-
tions from this work:

• The results reported in this work are not regular-
ized. The reason for not regularizing is because,
it opens the question of determining the value of
the regularization parameter (λ). Of course, the
extent of regularization depends on the value of n,
the number of iterations and many other factors.
Integrating a mechanism for choosing the value of
λ has been left as a future work. Technique pro-
posed in this work can be used [12].

• There is also need for automatically selecting the
best value of threshold – t, at least for relatively
smaller datasets.

• Performance of the model is also tied to the number
of SGD iterations (T). Setting T to five is rather
arbitrary, but has been done to minimize the train-
ing time. Clearly, there is a need to automatically
tune these parameters to the constraints of a spe-



cific application.

• Lastly, the three models proposed in this work:
sALRn, hsALRn and hsALRn(*), will result in
different size models as the threshold parameter t
varies. Clearly there is a need to systematically
evaluate the performance of each by varying t, and
making sure that the size of the model is the same.

• Applicability of proposed algorithms to smaller
quantities of data needs to be explored as well.

A Iterative Line Search

The Algorithm 4 determines the best η0 based on a
simple line-search procedure. The algorithm starts
with a large interval 106 and 10−6 and evaluates the
performance of the algorithm with different values with-
in the interval. At each iteration, it finds the best
interval and applies the algorithm recursively to find an
optimal value of the step size. The process continues
until the difference in the performance is less than
user-specified value – ε, which is fixed to 10−2. An

Algorithm 4 Determine-Initial-Step-Size

1: procedure determineIntialStepSize(DCV)
2: ε = 0.01, High = 6, Low = −6, Scale = 10
3: while (|PA − PB | > ε) do
4: # Algorithm 5
5: PA, PB , high, low =

evaluateLineSearch(DCV , High, Low, Scale)
6: High← high, Low ← low
7: end while
8: Return η0 = (10High + 10Low)/2
9: end procedure

outline of the evaluateLineSearch() function is given in
Algorithm 5. The EvaluateFunction() does a 90 : 10
split of DCV . It learns a classifier (using the learning
procedure of Algorithm 2) on the 90% of the data with
step size of 10α[i] and test on the remaining 10%. The
RMSE performance is returned.
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